MIXED SIGNAL

Technische '
CIRCUIT DESIGN Universitat

Berlin

A Divider-less Automatic Frequency Calibration for Millimeter-Wave Sub-
Sampling Phase-Locked Loop

Patrick Kurth, Urs Hecht, Enne Wittenhagen, Friedel Gerfers — Technische Universitat Berlin

System Introduction and Problem Statement

Sub-sampling phase-locked Loop for best jitter performance

No multiplication of the loop noise by N? due to lack of frequency divider

Sub-sampling phase detector has limited lock-in range and can not distinguish between
integer multiples of the reference frequency

SSPLLs employ secondary charge pump PLL to ensure proper locking

ref | SSPD

CP

PFD

LF

out

CP

AFC

fine
tuning

coarse
\ .
" tuning

System Introduction and Problem Statement

= Sub-sampling phase-locked Loop for best jitter performance
No multiplication of the loop noise by N? due to lack of frequency divider

= Sub-sampling phase detector has limited lock-in range and can not distinguish between
integer multiples of the reference frequency

= SSPLLs employ secondary charge pump PLL to ensure proper locking
= Divider for mmw frequencies (usually CML or IL) is power hungry and large in area

= Divider-less approach desirable for high-performance mmw SSPLLs

+ out
ref
e SSPD — CP LF —— (\,
tuning J coarse
" tuning
PFD CP AFC
[

Frequency Information by Delayed Sampling

= SSPLL in (true or false) lock: Phase detector samples at zero crossings
= Example for N =8 (fout/ fref)

Frequency Information by Delayed Sampling

= SSPLL in (true or false) lock: Phase detector samples at zero crossings
= Example for N =8 (fout/ fref)

Frequency Information by Delayed Sampling

= SSPLL in (true or false) lock: Phase detector samples at zero crossings
= Example for N =8 (fout/ fref)

= More sample points for frequency detection (N,,x = 7)

Frequency Information by Delayed Sampling

= SSPLL in (true or false) lock: Phase detector samples at zero crossings
= Example for N =8 (fout/ fref)
= More sample points for frequency detection (N,,x = 7)

= How many additional samplers are needed? -> Condition for detection of false lock:

Frequency Information by Delayed Sampling

= SSPLL in (true or false) lock: Phase detector samples at zero crossings
= Example for N =8 (fout/ fref)
= More sample points for frequency detection (N,,x = 7)

= How many additional samplers are needed? -> Condition for detection of false lock:

1 #k-1/2 " fiock) . 3 . . Af
frot - (Nauy + 1) { =k-1/(2 ,]lcre;() withany k and fioeck = (N 2 10) - fren i € {1, e [EH

Frequency Information by Delayed Sampling

= SSPLL in (true or false) lock: Phase detector samples at zero crossings
= Example for N =8 (fout/ fref)
= More sample points for frequency detection (N,,x = 7)

= How many additional samplers are needed? -> Condition for detection of false lock:

1 #k-1/2 " fiock) . 3 . . Af
frot - (Nauy + 1) { =k-1/(2 ,]lcre;() withany k and fioeck = (N 2 10) - fren i € {1, e [EH

(:)ZUVii) +k for i #0
Ny +1(=k fori=20

VAN AR

Frequency Information by Delayed Sampling

= SSPLL in (true or false) lock: Phase detector samples at zero crossings
= Example for N =8 (fout/ fref)
= More sample points for frequency detection (N,,x = 7)

= How many additional samplers are needed? -> Condition for detection of false lock:

1 #k-1/2 " fiock) . 3 . . Af
frot - (Nauy + 1) { =k-1/(2 ,]lcre;() withany k and fioeck = (N 2 10) - fren i € {1, e [EH

2(N +1i] i
- () {i k for i #0 -> solve numerically for N,

Ny +1(=k fori=20

VA AR

| VA Mmq

Detection Serialization

= Number of required auxiliary sampler N, heeds to be calculated from the condition for false
lock

= Depends on the ratio of the output and input frequency of the PLL and the tuning range of the
oscillator

Detection Serialization

= Number of required auxiliary sampler N, heeds to be calculated from the condition for false
lock

= Depends on the ratio of the output and input frequency of the PLL and the tuning range of the
oscillator

= For N = 64 and a tuning range of around 20 % N,,x = 15!

= This is not feasible in terms of capacitive load in mm-wave SSPLLs

Detection Serialization
= Number of required auxiliary sampler N, heeds to be calculated from the condition for false
lock

= Depends on the ratio of the output and input frequency of the PLL and the tuning range of the
oscillator

= For N = 64 and a tuning range of around 20 % N,,x = 15!
= This is not feasible in terms of capacitive load in mm-wave SSPLLs

= Luckily, parallel detection is not needed — Samples can be saved and digitized sequentially
and stored in a shift register

= This greatly simplifies the analog interface (only one sampler and comparator)

Detection Serialization
= Number of required auxiliary sampler N, heeds to be calculated from the condition for false
lock

= Depends on the ratio of the output and input frequency of the PLL and the tuning range of the
oscillator

= For N = 64 and a tuning range of around 20 % N,,x = 15!
= This is not feasible in terms of capacitive load in mm-wave SSPLLs

= Luckily, parallel detection is not needed — Samples can be saved and digitized sequentially
and stored in a shift register

= This greatly simplifies the analog interface (only one sampler and comparator)

= Slightly higher detection time, but this is negligible

Clock Generation

= Delay PLL reference with delay-locked loop
= Needed minimum resolution: Tt/ (Naux + 1) — DLL with at least N,,x + 1 delay elements

= Combine N,y + 1 delayed clocks into one auxiliary clock signal by sequentially cycling
through all delayed clocks — slightly higher frequency than reference

Clock Generation

= Delay PLL reference with delay-locked loop
= Needed minimum resolution: Tt/ (Naux + 1) — DLL with at least N,,x + 1 delay elements

= Combine N,y + 1 delayed clocks into one auxiliary clock signal by sequentially cycling
through all delayed clocks — slightly higher frequency than reference

= Tricky timing issue: update edge selector at rising or falling edge? (risk of glitches)

Clock Generation

= Delay PLL reference with delay-locked loop
= Needed minimum resolution: Tt/ (Naux + 1) — DLL with at least N,,x + 1 delay elements

= Combine N,y + 1 delayed clocks into one auxiliary clock signal by sequentially cycling
through all delayed clocks — slightly higher frequency than reference

= Tricky timing issue: update edge selector at rising or falling edge? (risk of glitches)
= Solve glitch problem by cycling backwards through all clock phases

= This reorders the samples, which can easily be fixed in the frequency decoder

Clock Generation

= Delay PLL reference with delay-locked loop
= Needed minimum resolution: Tt/ (Naux + 1) — DLL with at least N,,x + 1 delay elements

= Combine N,y + 1 delayed clocks into one auxiliary clock signal by sequentially cycling
through all delayed clocks — slightly higher frequency than reference

= Tricky timing issue: update edge selector at rising or falling edge? (risk of glitches)
= Solve glitch problem by cycling backwards through all clock phases
= This reorders the samples, which can easily be fixed in the frequency decoder

\ [Example for Ny, = 3: | N \
Delayed Clocks \ N \ I \ [‘/ \
\ [

—
-

I \ \
__| / | | 5 | {/ |
Reference l \ | I \ [\
LY \J

AFC Clock

System Overview

Directly sample VCO without divider to determine frequency state

Convert to digital representation (high, low, zero -> HHHOLLL)

Decode frequency state and update coarse oscillator tuning

Delayed clocks generated by a DLL
and an edge selector

High-speed sampler for VCO
“2-Bit-ADC”: Window comparator

Shift register and frequency state
decoder

Finite state machine controls AFC

[

ref| | pFD CP Filter Delay
o Line
| DLL
Edge clk
S 1
Selector amprer
clk o—
t D 0SC Clk_
rese . State EN
lock | Machine
o_

High Shift

Register

EN H

Decoder

>Low Shift
D—'_ Register

freq

Sampler and Comparator

= Fully-differential sampler: transmission gate as switch

= Cross-coupling between positive and negative nodes to cancel signal feedthrough during the
hold phase

= Window comparator with two fully-differential comparators (strongARM Ilatches)
= Symmetric design cancels charge injection, voltage droop etc.

= Deliberate offset (approximately 150 mV) by transistor sizing for improved noise margin and
timing errors

clkn

inp o o outp VDD ﬁ L_)| E] :j
clkp ><
o o
vdd clk outp ‘j X E outn clk
vss | | > '
—

vdd | o—| x2 x1 |—o o—l X2 x1 l—o

=3 inlp in2p in2n inln

VSss clk clk
VSs - —

clkn
inn o © outn
clkp

Frequency Decoder

= Decode frequency state: map quantized samples from shift register to lock state of PLL
= Update coarse tuning of the oscillator

= Simple algorithm is sufficient: increase coarse frequency setting when lock frequency is too
low, otherwise decrease

Frequency Decoder

= Decode frequency state: map quantized samples from shift register to lock state of PLL
= Update coarse tuning of the oscillator

= Simple algorithm is sufficient: increase coarse frequency setting when lock frequency is too
low, otherwise decrease

= Charge pump polarity (negative, positive) of SSPLL is important
Negative feedback in both cases
Frequency decoder mapping is inverse for negative CP polarity

= Decoder is implemented as lookup table (simple combinatorial logic)

Frequency Decoder

= Decode frequency state: map quantized samples from shift register to lock state of PLL
= Update coarse tuning of the oscillator

= Simple algorithm is sufficient: increase coarse frequency setting when lock frequency is too
low, otherwise decrease

= Charge pump polarity (negative, positive) of SSPLL is important
Negative feedback in both cases
Frequency decoder mapping is inverse for negative CP polarity

= Decoder is implemented as lookup table (simple combinatorial logic)

= Map patterns such as OLLLOHHHOLLLOHHH to frequency state (e.g. -1)

N A MU A AL

Lock Detector

= The AFC can only run when PLL is in lock -
> Divider-less lock detector needed

Lock Detector
= The AFC can only run when PLL is in lock -
> Divider-less lock detector needed

= Compare consecutive samples after the
main SSPD (two storage locations)

Lock Detector
= The AFC can only run when PLL is in lock -
> Divider-less lock detector needed

= Compare consecutive samples after the
main SSPD (two storage locations)

= SSPLL is in lock when many samples are
equal (internal counter saturates)

Lock Detector

o ",

>(Store new Value}—f Initial :

= The AFC can only run when PLL is in lock - [Compar‘é Values)
v
yes

.

> Divider-less lock detector needed

= Compare consecutive samples after the

C
main SSPD (two storage locations) ((Count up

no
(Toggle storage location}—(Reset counter)

= SSPLL is in lock when many samples are
equal (internal counter saturates)

Lock Detector

o .,

>(Store new value J« Initial :

= The AFC can only run when PLL is in lock - [Compar‘é Values)
v
yes

.

> Divider-less lock detector needed

= Compare consecutive samples after the

C
main SSPD (two storage locations) ((Count up

no
(Toggle storage location}—(Reset counter)

O—D ' ~eonipare lock
vin store? Saturating ——o
)\ J————psawrating
storel § % — Counter

J- reset

- 1
>DFF Oﬁ]ua select

~compare D O—
| : ~select

2y

£ store Store
re compare storel store2
O—— Pulser select ~select

= SSPLL is in lock when many samples are
equal

Lock Detector g .
{Store new Value}—; Initial :

.

Y

[Compare Values)

= The AFC can only run when PLL is in lock -
> Divider-less lock detector needed

= Compare consecutive samples after the yes

Count
main SSPD (two storage locations) (b

no
= SSPLL is in lock when many samples are (Toggle storage location}_(Reset Coumer)
equal
o | > } ~comparc lock
vin store2 D Saturating —o
Viampt W ST S B Seard Counter
-J- DFF| equal
Equal ||| ||| | |_| |_|ﬂ “_“ > b— select

~compare D O—
| : ~select

Select |||| |||| ||||| |||||||
|_| rof compare store orel store tore?
store store
Count Up ”” ””I][]""_[]""”"_""M]""ﬂm"""m”"""m"m O— Pulser select } ~select }

PLL is Locked ==
Count
il 1 = ol IS

Automatic Frequency Calibration — Simulation Results

= SSPLL with f.of = 875MHz, f,,; = 56 GHz (N = 64)

56.000 -

t ot
=~ ot
] —
Ut o
o wt

Frequency
(GHz)

Lock

1001
1000
OI11

Oscillator
Tuning

Comparison with State-of-the-Art

Work [1] [7] [8] This work
Technology (nm) 40 180 65 22 (FDSOI)
Frequency (GHz) 14 2.3 40.5 56

Reference Frequency (GHz) 200 48 100 873
Methodology FLL FLL + Counter Secondary PLLL. Sub-sampling with DLL
FLL/AFC DC Power (mW) 1.5 46.7°% 4.59 (11)
Divider — 70 = 2 none none
AFC/FLL Area (um?) 8600* 35 600* 33600* kZOOU#)

5 Total PLL power consumption * Estimated from die photograph # Pre-layout estimation

[1]1 Z. Zhang et al., “A 0.65-V 12-16-GHz Sub-Sampling PLL with 56.4-fsrms Integrated Jitter and -256.4-dB FoM”, IEEE Journal of Solid-
State Circuits, vol. 55, no. 6, pp. 1665—1683, 2020.

[7] W. Chang et al., “A Fractional-N Divider-Less Phase-Locked Loop With a Subsampling Phase Detector,” IEEE Journal of Solid-State
Circuits, vol. 49, no. 12, pp. 2964-2975, 2014.

[8] Wang, Hao et al., “Low-Power and Low-Noise Millimeter-Wave SSPLL With Subsampling Lock Detector for Automatic Dividerless
Frequency Acquisition,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 469-481, 2021.

10

Conclusion

= Divider-less automatic frequency calibration for sub-sampling phase locked loops

= Suitable for highest frequencies, enables truly divider-less millimeter-wave SSPLLs

= Mainly digital implementation -> synthesizable and scalable with technology advances
= System can be extremely low power and area

= Analog front-end: Sampler, Comparator and DLL; Only sampler needs to have high
speed/bandwidth

= Serialized sampling greatly reduces complexity of analog front-end

= Implementation independent of internal PLL architecture (analog, digital, discrete-time) as well
as VCO type (LC, ring, etc.)

= AFC can run continuously without significantly impairing power consumption

11

Thank you for your Attention.
Questions?

