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System Introduction and Problem Statement

 Sub-sampling phase-locked Loop for best jitter performance

No multiplication of the loop noise by 𝑁2 due to lack of frequency divider

 Sub-sampling phase detector has limited lock-in range and can not distinguish between
integer multiples of the reference frequency

 SSPLLs employ secondary charge pump PLL to ensure proper locking
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No multiplication of the loop noise by 𝑁2 due to lack of frequency divider

 Sub-sampling phase detector has limited lock-in range and can not distinguish between
integer multiples of the reference frequency

 SSPLLs employ secondary charge pump PLL to ensure proper locking

 Divider for mmw frequencies (usually CML or IL) is power hungry and large in area

 Divider-less approach desirable for high-performance mmw SSPLLs
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Frequency Information by Delayed Sampling

 SSPLL in (true or false) lock: Phase detector samples at zero crossings

 Example for N = 8 (𝑓out/𝑓ref)
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 SSPLL in (true or false) lock: Phase detector samples at zero crossings

 Example for N = 8 (𝑓out/𝑓ref)

 More sample points for frequency detection (𝑁aux = 7)

 How many additional samplers are needed? -> Condition for detection of false lock:

1
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ቊ
≠ 𝑘 ⋅ 1/(2 ⋅ 𝑓lock)
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Δ𝑓

𝑓ref
with any 𝑘 and

⇔
2(𝑁 ± 𝑖)

𝑁𝑎𝑢𝑥 + 1
ቊ
≠ 𝑘 for 𝑖 ≠ 0
= 𝑘 for 𝑖 = 0

-> solve numerically for 𝑁aux

2



Detection Serialization

 Number of required auxiliary sampler 𝑁aux needs to be calculated from the condition for false 
lock

 Depends on the ratio of the output and input frequency of the PLL and the tuning range of the 
oscillator
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Detection Serialization

 Number of required auxiliary sampler 𝑁aux needs to be calculated from the condition for false 
lock

 Depends on the ratio of the output and input frequency of the PLL and the tuning range of the 
oscillator

 For 𝑁 = 64 and a tuning range of around 20 % 𝑁aux = 15!

 This is not feasible in terms of capacitive load in mm-wave SSPLLs

 Luckily, parallel detection is not needed → Samples can be saved and digitized sequentially 
and stored in a shift register

 This greatly simplifies the analog interface (only one sampler and comparator)

 Slightly higher detection time, but this is negligible
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Clock Generation
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 Delay PLL reference with delay-locked loop

 Needed minimum resolution: Τ𝑇ref (𝑁aux + 1) → DLL with at least 𝑁aux + 1 delay elements

 Combine 𝑁aux + 1 delayed clocks into one auxiliary clock signal by sequentially cycling 
through all delayed clocks → slightly higher frequency than reference
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Clock Generation

 Delay PLL reference with delay-locked loop

 Needed minimum resolution: Τ𝑇ref (𝑁aux + 1) → DLL with at least 𝑁aux + 1 delay elements

 Combine 𝑁aux + 1 delayed clocks into one auxiliary clock signal by sequentially cycling 
through all delayed clocks → slightly higher frequency than reference

 Tricky timing issue: update edge selector at rising or falling edge? (risk of glitches)

 Solve glitch problem by cycling backwards through all clock phases

 This reorders the samples, which can easily be fixed in the frequency decoder

Delayed Clocks

Reference

AFC Clock

Example for 𝑁aux = 3:
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System Overview

 Directly sample VCO without divider to determine frequency state

 Convert to digital representation (high, low, zero -> HHH0LLL)

 Decode frequency state and update coarse oscillator tuning

 Delayed clocks generated by a DLL 
and an edge selector

 High-speed sampler for VCO

 “2-Bit-ADC”: Window comparator

 Shift register and frequency state 
decoder

 Finite state machine controls AFC
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Sampler and Comparator

 Fully-differential sampler: transmission gate as switch

 Cross-coupling between positive and negative nodes to cancel signal feedthrough during the 
hold phase

 Window comparator with two fully-differential comparators (strongARM latches)

 Symmetric design cancels charge injection, voltage droop etc.

 Deliberate offset (approximately 150 mV) by transistor sizing for improved noise margin and 
timing errors
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Frequency Decoder

 Decode frequency state: map quantized samples from shift register to lock state of PLL

 Update coarse tuning of the oscillator

 Simple algorithm is sufficient: increase coarse frequency setting when lock frequency is too 
low, otherwise decrease
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Frequency Decoder

 Decode frequency state: map quantized samples from shift register to lock state of PLL

 Update coarse tuning of the oscillator

 Simple algorithm is sufficient: increase coarse frequency setting when lock frequency is too 
low, otherwise decrease

 Charge pump polarity (negative, positive) of SSPLL is important 

Negative feedback in both cases

Frequency decoder mapping is inverse for negative CP polarity

 Decoder is implemented as lookup table (simple combinatorial logic)

 Map patterns such as 0LLL0HHH0LLL0HHH to frequency state (e.g. -1)
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Lock Detector

 The AFC can only run when PLL is in lock -
> Divider-less lock detector needed
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Automatic Frequency Calibration – Simulation Results

 SSPLL with 𝑓ref = 875 MHz, 𝑓out = 56 GHz (𝑁 = 64)
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Conclusion

 Divider-less automatic frequency calibration for sub-sampling phase locked loops

 Suitable for highest frequencies, enables truly divider-less millimeter-wave SSPLLs

 Mainly digital implementation -> synthesizable and scalable with technology advances

 System can be extremely low power and area

 Analog front-end: Sampler, Comparator and DLL; Only sampler needs to have high 
speed/bandwidth

 Serialized sampling greatly reduces complexity of analog front-end

 Implementation independent of internal PLL architecture (analog, digital, discrete-time) as well 
as VCO type (LC, ring, etc.)

 AFC can run continuously without significantly impairing power consumption
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Thank you for your Attention.

Questions?


