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System Introduction and Problem Statement

Sub-sampling phase-locked Loop for best jitter performance

No multiplication of the loop noise by N? due to lack of frequency divider

Sub-sampling phase detector has limited lock-in range and can not distinguish between
integer multiples of the reference frequency

SSPLLs employ secondary charge pump PLL to ensure proper locking
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System Introduction and Problem Statement

= Sub-sampling phase-locked Loop for best jitter performance
No multiplication of the loop noise by N? due to lack of frequency divider

= Sub-sampling phase detector has limited lock-in range and can not distinguish between
integer multiples of the reference frequency

= SSPLLs employ secondary charge pump PLL to ensure proper locking
= Divider for mmw frequencies (usually CML or IL) is power hungry and large in area

= Divider-less approach desirable for high-performance mmw SSPLLs

+ out
ref
e SSPD — CP LF —— (\,
tuning J coarse
" tuning
PFD CP AFC
[




Frequency Information by Delayed Sampling

= SSPLL in (true or false) lock: Phase detector samples at zero crossings
= Example for N =8 (fout/ fref)
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Frequency Information by Delayed Sampling

= SSPLL in (true or false) lock: Phase detector samples at zero crossings
= Example for N =8 (fout/ fref)
= More sample points for frequency detection (N,,x = 7)

= How many additional samplers are needed? -> Condition for detection of false lock:
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Detection Serialization

= Number of required auxiliary sampler N, heeds to be calculated from the condition for false
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= Depends on the ratio of the output and input frequency of the PLL and the tuning range of the
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Detection Serialization
= Number of required auxiliary sampler N, heeds to be calculated from the condition for false
lock

= Depends on the ratio of the output and input frequency of the PLL and the tuning range of the
oscillator

= For N = 64 and a tuning range of around 20 % N,,x = 15!
= This is not feasible in terms of capacitive load in mm-wave SSPLLs

= Luckily, parallel detection is not needed — Samples can be saved and digitized sequentially
and stored in a shift register

= This greatly simplifies the analog interface (only one sampler and comparator)

= Slightly higher detection time, but this is negligible



Clock Generation

= Delay PLL reference with delay-locked loop
= Needed minimum resolution: Tt/ (Naux + 1) — DLL with at least N,,x + 1 delay elements

= Combine N,y + 1 delayed clocks into one auxiliary clock signal by sequentially cycling
through all delayed clocks — slightly higher frequency than reference
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= Delay PLL reference with delay-locked loop
= Needed minimum resolution: Tt/ (Naux + 1) — DLL with at least N,,x + 1 delay elements

= Combine N,y + 1 delayed clocks into one auxiliary clock signal by sequentially cycling
through all delayed clocks — slightly higher frequency than reference

= Tricky timing issue: update edge selector at rising or falling edge? (risk of glitches)
= Solve glitch problem by cycling backwards through all clock phases
= This reorders the samples, which can easily be fixed in the frequency decoder

\ [ Example for Ny, = 3: | N \
Delayed Clocks \ N \ I \ [ ‘/ \
\ [

—
-

I \ \
__| / | | 5 | {/ |
Reference l \ | I \ [ \
LY \J

AFC Clock




System Overview

Directly sample VCO without divider to determine frequency state

Convert to digital representation (high, low, zero -> HHHOLLL)

Decode frequency state and update coarse oscillator tuning

Delayed clocks generated by a DLL
and an edge selector

High-speed sampler for VCO
“2-Bit-ADC”: Window comparator

Shift register and frequency state
decoder

Finite state machine controls AFC
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Sampler and Comparator

= Fully-differential sampler: transmission gate as switch

= Cross-coupling between positive and negative nodes to cancel signal feedthrough during the
hold phase

=  Window comparator with two fully-differential comparators (strongARM Ilatches)
=  Symmetric design cancels charge injection, voltage droop etc.

= Deliberate offset (approximately 150 mV) by transistor sizing for improved noise margin and
timing errors
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Frequency Decoder

= Decode frequency state: map quantized samples from shift register to lock state of PLL
= Update coarse tuning of the oscillator

=  Simple algorithm is sufficient: increase coarse frequency setting when lock frequency is too
low, otherwise decrease
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Frequency Decoder

= Decode frequency state: map quantized samples from shift register to lock state of PLL
= Update coarse tuning of the oscillator

=  Simple algorithm is sufficient: increase coarse frequency setting when lock frequency is too
low, otherwise decrease

= Charge pump polarity (negative, positive) of SSPLL is important
Negative feedback in both cases
Frequency decoder mapping is inverse for negative CP polarity

= Decoder is implemented as lookup table (simple combinatorial logic)

= Map patterns such as OLLLOHHHOLLLOHHH to frequency state (e.g. -1)
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Automatic Frequency Calibration — Simulation Results

= SSPLL with f.of = 875MHz, f,,; = 56 GHz (N = 64)

56.000 -

t ot
=~ ot
] —
Ut o
o wt

Frequency
(GHz)

Lock

1001
1000
OI11

Oscillator
Tuning




Comparison with State-of-the-Art

Work [1] [ 7] [8] This work
Technology (nm) 40 180 65 22 (FDSOI)
Frequency (GHz) 14 2.3 40.5 56

Reference Frequency (GHz) 200 48 100 873
Methodology FLL FLL + Counter  Secondary PLLL.  Sub-sampling with DLL
FLL/AFC DC Power (mW) 1.5 46.7°% 4.59 (11 )
Divider — 70 = 2 none none
AFC/FLL Area (um?) 8600* 35 600* 33600* kZOOU# )

5 Total PLL power consumption * Estimated from die photograph # Pre-layout estimation

[1]1 Z. Zhang et al., “A 0.65-V 12-16-GHz Sub-Sampling PLL with 56.4-fsrms Integrated Jitter and -256.4-dB FoM”, IEEE Journal of Solid-
State Circuits, vol. 55, no. 6, pp. 1665—1683, 2020.

[7] W. Chang et al., “A Fractional-N Divider-Less Phase-Locked Loop With a Subsampling Phase Detector,” IEEE Journal of Solid-State
Circuits, vol. 49, no. 12, pp. 2964-2975, 2014.

[8] Wang, Hao et al., “Low-Power and Low-Noise Millimeter-Wave SSPLL With Subsampling Lock Detector for Automatic Dividerless
Frequency Acquisition,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 469-481, 2021.
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Conclusion

= Divider-less automatic frequency calibration for sub-sampling phase locked loops

= Suitable for highest frequencies, enables truly divider-less millimeter-wave SSPLLs

= Mainly digital implementation -> synthesizable and scalable with technology advances
= System can be extremely low power and area

= Analog front-end: Sampler, Comparator and DLL; Only sampler needs to have high
speed/bandwidth

= Serialized sampling greatly reduces complexity of analog front-end

= Implementation independent of internal PLL architecture (analog, digital, discrete-time) as well
as VCO type (LC, ring, etc.)

= AFC can run continuously without significantly impairing power consumption
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Thank you for your Attention.
Questions?



