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System Introduction and Problem Statement

 Sub-sampling phase-locked Loop for best jitter performance

No multiplication of the loop noise by 𝑁2 due to lack of frequency divider

 Sub-sampling phase detector has limited lock-in range and can not distinguish between
integer multiples of the reference frequency

 SSPLLs employ secondary charge pump PLL to ensure proper locking
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System Introduction and Problem Statement

 Sub-sampling phase-locked Loop for best jitter performance

No multiplication of the loop noise by 𝑁2 due to lack of frequency divider

 Sub-sampling phase detector has limited lock-in range and can not distinguish between
integer multiples of the reference frequency

 SSPLLs employ secondary charge pump PLL to ensure proper locking

 Divider for mmw frequencies (usually CML or IL) is power hungry and large in area

 Divider-less approach desirable for high-performance mmw SSPLLs
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Frequency Information by Delayed Sampling

 SSPLL in (true or false) lock: Phase detector samples at zero crossings

 Example for N = 8 (𝑓out/𝑓ref)
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 SSPLL in (true or false) lock: Phase detector samples at zero crossings

 Example for N = 8 (𝑓out/𝑓ref)

 More sample points for frequency detection (𝑁aux = 7)

 How many additional samplers are needed? -> Condition for detection of false lock:
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𝑓ref
with any 𝑘 and

⇔
2(𝑁 ± 𝑖)

𝑁𝑎𝑢𝑥 + 1
ቊ
≠ 𝑘 for 𝑖 ≠ 0
= 𝑘 for 𝑖 = 0

-> solve numerically for 𝑁aux
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Detection Serialization

 Number of required auxiliary sampler 𝑁aux needs to be calculated from the condition for false 
lock

 Depends on the ratio of the output and input frequency of the PLL and the tuning range of the 
oscillator
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Detection Serialization

 Number of required auxiliary sampler 𝑁aux needs to be calculated from the condition for false 
lock

 Depends on the ratio of the output and input frequency of the PLL and the tuning range of the 
oscillator

 For 𝑁 = 64 and a tuning range of around 20 % 𝑁aux = 15!

 This is not feasible in terms of capacitive load in mm-wave SSPLLs

 Luckily, parallel detection is not needed → Samples can be saved and digitized sequentially 
and stored in a shift register

 This greatly simplifies the analog interface (only one sampler and comparator)

 Slightly higher detection time, but this is negligible
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Clock Generation
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 Delay PLL reference with delay-locked loop

 Needed minimum resolution: Τ𝑇ref (𝑁aux + 1) → DLL with at least 𝑁aux + 1 delay elements

 Combine 𝑁aux + 1 delayed clocks into one auxiliary clock signal by sequentially cycling 
through all delayed clocks → slightly higher frequency than reference
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Clock Generation

 Delay PLL reference with delay-locked loop

 Needed minimum resolution: Τ𝑇ref (𝑁aux + 1) → DLL with at least 𝑁aux + 1 delay elements

 Combine 𝑁aux + 1 delayed clocks into one auxiliary clock signal by sequentially cycling 
through all delayed clocks → slightly higher frequency than reference

 Tricky timing issue: update edge selector at rising or falling edge? (risk of glitches)

 Solve glitch problem by cycling backwards through all clock phases

 This reorders the samples, which can easily be fixed in the frequency decoder

Delayed Clocks

Reference

AFC Clock

Example for 𝑁aux = 3:
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System Overview

 Directly sample VCO without divider to determine frequency state

 Convert to digital representation (high, low, zero -> HHH0LLL)

 Decode frequency state and update coarse oscillator tuning

 Delayed clocks generated by a DLL 
and an edge selector

 High-speed sampler for VCO

 “2-Bit-ADC”: Window comparator

 Shift register and frequency state 
decoder

 Finite state machine controls AFC
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Sampler and Comparator

 Fully-differential sampler: transmission gate as switch

 Cross-coupling between positive and negative nodes to cancel signal feedthrough during the 
hold phase

 Window comparator with two fully-differential comparators (strongARM latches)

 Symmetric design cancels charge injection, voltage droop etc.

 Deliberate offset (approximately 150 mV) by transistor sizing for improved noise margin and 
timing errors
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Frequency Decoder

 Decode frequency state: map quantized samples from shift register to lock state of PLL

 Update coarse tuning of the oscillator

 Simple algorithm is sufficient: increase coarse frequency setting when lock frequency is too 
low, otherwise decrease
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Frequency Decoder

 Decode frequency state: map quantized samples from shift register to lock state of PLL

 Update coarse tuning of the oscillator

 Simple algorithm is sufficient: increase coarse frequency setting when lock frequency is too 
low, otherwise decrease

 Charge pump polarity (negative, positive) of SSPLL is important 

Negative feedback in both cases

Frequency decoder mapping is inverse for negative CP polarity

 Decoder is implemented as lookup table (simple combinatorial logic)

 Map patterns such as 0LLL0HHH0LLL0HHH to frequency state (e.g. -1)
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Lock Detector

 The AFC can only run when PLL is in lock -
> Divider-less lock detector needed
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Automatic Frequency Calibration – Simulation Results

 SSPLL with 𝑓ref = 875 MHz, 𝑓out = 56 GHz (𝑁 = 64)
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Conclusion

 Divider-less automatic frequency calibration for sub-sampling phase locked loops

 Suitable for highest frequencies, enables truly divider-less millimeter-wave SSPLLs

 Mainly digital implementation -> synthesizable and scalable with technology advances

 System can be extremely low power and area

 Analog front-end: Sampler, Comparator and DLL; Only sampler needs to have high 
speed/bandwidth

 Serialized sampling greatly reduces complexity of analog front-end

 Implementation independent of internal PLL architecture (analog, digital, discrete-time) as well 
as VCO type (LC, ring, etc.)

 AFC can run continuously without significantly impairing power consumption
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Thank you for your Attention.

Questions?


