

A Divider-less General PLL Lock Assist and Automatic Frequency Calibration System for Millimeter-Wave Sub-Sampling Phase-Locked Loops

Patrick Kurth, Philipp Nickel, Urs Hecht and Friedel Gerfers – Technische Universität Berlin October 25, 2022

Sub-Sampling Phase-Locked Loops Advantages and Issues

- Sub-sampling phase-locked loop for best jitter performance (no multiplication of loop noise by N²)
- No power-hungry and bulky feed-back frequency divider
- Sub-sampling phase detector with limited lock-in range
- Can not distinguish between integer multiples of the reference frequency (aliasing)
- SSPLLs employ secondary charge pump phase-locked loop with frequency divider
- Small SSPLL with more efficient and smaller frequency correction desirable

Previous Work

- Divider-less automatic frequency calibration for sub-sampling phase-locked loops
- Virtually raise sampling rate by using N_{aux} auxiliary samples
- Serialized sub-sampling to detect actual lock-in frequency (no aliasing)

Issues with previous Implementation

- Partly analog processing (lock detector stores values on capacitors)
- Clock generator is complex and poses timing-problem
- Increased sample clock frequency: $f_{clk} = f_{ref} \cdot (N_{aux} + 1) / N_{aux}$
- No solution for lock-in problem

Sub-Sampling Frequency Detection

- Auxiliary samples can be acquired arbitrarily slow
- Generalized expression for required clock frequency: $f_{clk} = f_{ref} \cdot \frac{N_{aux} + 1}{1 + k(N_{cuv} + 1)}$
- Sub-sampling factor k can be any positive integer, it can also be altered dynamically
- Previous implementation is similar to k = 1 for reasonable values of N_{aux}

Required Clocks

• Need auxiliary sample clock (clk) and synchronization clock (sync)

- Fractional-N ratio between $f_{\rm ref}$ and $f_{\rm clk}$ required
- Use integer-N charge-pump PLL with two dividers to generate clocks

Patrick Kurth - A Divider-less General PLL Lock Assist and Automatic Frequency Calibration System for mmW SSPLLs

Noise Analysis

- Auxiliary CPPLL creates noisy clock for AFC
- Worst-case sampling point at zero crossings
- Error must be smaller than ADC resolution:

$$2\pi A_0 f_{\rm osc} T_J < \frac{A_0}{2^{N_{\rm ADC}}} \Leftrightarrow T_J < \frac{1}{2^{N_{\rm ADC}+1} \pi f_{\rm osc}}$$

- Leads to jitter requirement of 500 fs
- Phase noise lower integration bound determined by number of samples *N*_{aux}:

$$f_{\rm lower} = f_{\rm clk}/N_{\rm aux} pprox$$
 11.3 MHz

- Estimation and integration of CPPLL phase noise
 ⇒ oscillator FoM of -160 dB leads to DC power of 1.77 mW
- Easy to achieve with ring oscillator

Top-level System

- vcap and vosc from main PLL
- small analog front-end with robust digital processing

Simulated Signals

Comparison with State-of-the-Art

Work	JSSC 55/2020	JSSC 49/2014	TMTT 69/2021	This work
Technology (nm)	40	180	65	22 (FDSOI)
Frequency (GHz)	14	2.3	40.5	56
Reference Frequency (GHz)	200	48	100	875
Methodology	FLL	FLL + Counter	Secondary PLL	Sub-sampling with PLL
FLL/AFC DC Power (mW)	1.5	46.7 ^{\$}	4.59	1.8
Divider	$\div 70$	$\div 2$	none	none
AFC/FLL Area (μm^2)	8600*	35 600*	33 600*	$4000^{\#}$
^{\$} Total PLL	*Estimated from die photograph		[#] Pre-layout estimation	

Conclusion

- Divider-less automatic frequency calibration for sub-sampling phase-locked loops
- Suitable for highest frequencies, enables truly divider-less millimeter-wave SSPLLs
- Small analog front-end, all processing done in digital
- Most complex block: low-frequency charge-pump PLL with relaxed noise requirements
- Low power and area
- Power consumption can be reduced even further after initial lock (dynamic switching of k)

Thank you for your attention. Questions?