A Transmission-Line-based Phase Shifter for High-Speed, Ultra-Low-Power N-PSK Transmitters

Patrick Kurth, Kai Misselwitz, Urs Hecht and Friedel Gerfers kurth@tu-berlin.de

Motivation: Enabling Future Ultra-Low-Power Polar Transmitter

- Polar Transmitter
 - lower power consumption, prefer APSK over QAM
 - Especially Interesting for OFDM signals
- Direct Digital Modulation
 - No upconverters, simpler architectures
 - No High-Performance Data Converters

Phase Shifter Concept

- Transmission-Line Elements
 - Coplanar Waveguides
 - \circ Length optimized for $\lambda/4$

Modulation Formats

- More Transmission Line Elements
 - Four Elements for QPSK, eight for 8-PSK etc.
 - Selection of Modulation Format by Switches
 - More complex Modulation with lower carrier frequencies

- MOSFET Switches
 - Slight capacitive Load, but negligible
- Fully-Passive Structure
- Element Length:

Nmax: Number of bits for modulation format fcmax: Carrier Frequency

Simulated Waveforms

• Momentum and **FEM-Simulation** • Virtually no loss • Acceptable Reflection

- Phase-Shifted Waveforms
- Waveforms before S and after saturating Amplifier • Phase Modulation without Amplitude \geq

Implementation with Summing Tree

- 22 nm FDSOI Technology
- High-Q RF-Capable Top Metal
- Structure covered by Ground Shield
- Total Size: 325 µm x 165 µm

Simulation Results for different Modulation Formats

- Pseudo-Random Bit-Stream input
- Saturation Amplifier after Phase Shifter (behavioural Model)
- Virtually no power consumption
 - Power Amplifier has high power comsumption, but this is true is for all transmitter

Technical University of Berlin (Germany), Chair of Mixed Signal Circuit Design, Prof. Dr.-Ing. Friedel Gerfers