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Zusammenfassung

Für unsere modernen Kommunikationssysteme wie WiFi oder mobile Kommunikation (Handy)
sind hohe Bandbreiten und damit ein hoher Datendurchsatz erstrebenswert. Da die verfügbaren
Sendefrequenzen limitiert sind, müssen diese Systeme in ihrer Leistungsfähigkeit zunehmen,
um dem zunehmenden Fortschritt der Verwendung von Technologien gerecht zu werden.
Wichtige Fragen beim Entwurf von Kommunikationssystemen sind, neben anderen, das gener-
ierte Rauschen sowie der ökonomische Wert. Je niedriger das Rauschen ist, desto enger können
einzelne Kanäle zueinander platziert werden, was es einen höheren Datendurchsatz in einem Fre-
quenzband ermöglicht. Je günstiger Systeme entworfen werden, desto mehr können produziert
werden.

Ein wichtiger Baustein in Kommunikationssystemen ist der Oszillator, welcher benötigte peri-
odische in gewünschter Frequenz erzeugt. Aktuell bilden Oszillatoren basierend auf Kapazitäten
und Induktivitäten (LC-Oszillatoren) den Goldstandard in der Hochfrequenzindustrie. Die In-
duktivitäten nehmen allerdings einen wesentlichen Teil der Fläche der integrierten Schaltungen
ein. Während alternative Oszillatortopologien existieren, bleibt das niedrige Rauschen von
LC-Oszillatoren unübertroffen. Diese Eigenschaft ist in einigen Fällen wichtiger als die hohe
verbrauchte Fläche. Es ist daher von großen Interesse, eine Alternative zu finden, die ein ähnlich
gutes Rauschverhalten wie LC-Oszillatoren aufweist, dabei aber weniger Fläche benötigt.

In dieser Arbeit wird ein möglicher Kandidat vorgestellt. Diese Oszillatorstruktur basiert
auf aktiven Induktivitäten. Während diese üblicherweise mehr Rauschen als ihre passiven
Gegenstücke erzeugen, kann ihr Qualitätsfaktor viel höher sein. Da Oszillatorrauschen stark
mit diesem Parameter verknüpft ist, könnten durch Oszillatoren, die auf aktiven Induktivitäten
basieren, Systeme entworfen werden, deren Rauschen gleich oder besser ist als das von LC-
Oszillatoren. Außerdem wäre hier die benötigte Fläche deutlich kleiner. Der implementierte
Oszillator zeigt vielversprechende Ergebnisse – obwohl er LC-Oszillatoren nicht übertrifft – die
viel Potential für weitere Verbesserungen aufweisen. Zusätzlich präsentiert diese Arbeit eine
theoretische Analyse von Oszillatoren, die auf aktiven Induktivitäten basieren.
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Abstract

In our modern communication systems, such as WiFi or mobile phones communications, high
bandwidth and therefore high data throughput is desirable. Since the available frequencies
for transmission are limited, these systems must improve in performance to keep up with the
advance in technology usage. Important topics in designing communication systems are, besides
many others, the noise that is generated as well as the economical value. The lower the noise,
the more tight transmission channels can be placed, hence more data can be transmitted in
the same frequency band, since security spacing can be reduced. The cheaper systems can be
designed, the more can be produced.

A part of great importance in communication systems are oscillators, which generate needed
periodic signals. Currently, the gold standard in the radio frequency industry are oscillators built
from capacitors and inductors (LC oscillators), where the latter consume a big portion of the area
of the respective integrated circuits. While there are many different oscillator topologies, none
match the low noise of LC oscillators, which in some cases is the most important parameter,
even with regard to chip area. It is therefore of great interest to find an alternative, which can
keep up with the performance of LC oscillators.

In this work, a possible candidate is presented. This oscillator structure is based on building
active inductors. While these generally produce more noise than their passive counterparts,
their quality factor can be much higher. Since oscillator noise is highly related to this parameter,
oscillators based on active inductors could introduce systems, whose noise performance is equal
to or better than LC oscillators while requiring less space. The implemented oscillator shows
promising results – though not outperforming LC oscillators – which also show great potential
for further improvements. Additionally, a theoretical analysis of oscillators based on active
inductors is performed.
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Chapter 1.

Introduction

In our world today, wireless communication plays a more and more important role in our daily
life and society. Probably one of the most important technologies for day-to-day activities is the
smartphone. Receiving mail, planning schedules, playing games, all while always being “online”.
Usually, mobile communication is expected by its users to provide all demanded functions and
data, preferably with high data rates and no connection issues. Only events like New Year’s
Eve show the limits of our current communication technology, where it is often unlikely that a
proper connection between two users can be established.

Our communication technology affects not only daily life but also industry, medical applications
and many more. There is public radio, mobile phones, television, satellite (for example GPS),
Wi-Fi and also household objects such as light control or entertainment systems. Implanted
devices for medical diagnosis and treatment can now be checked and operated without removing
them from the body. It is safe to say that our current life is not thinkable and would be very
different without wireless technology. How is it possible that wireless communication devices
are increasing with data rates and accessibility also improving simultaneously?

The increasing technology pushes the boundaries of possibilities and imposes new requirements
on performance of communication systems. One major issue in the design of these systems is
noise. It limits the minimal detectable signals and disturbes other communication channels and
standards. With the current advance in technology, this demands a great noise performance of
these systems. As will be shown in the course of this work, oscillators (which are needed for
modern communication concepts) play an important role in determining the noise performace
of entire communication systems.

Besides opening up more and more fields of applications, the existing technologies also demand
to improve. Cellular mobile communication has now been around for some years, but there
still are many developments of new wireless standards. This is not surprising: As of 2015,
roughly 1.4 ⋅ 109 smartphones have been sold world-wide, all needing small, reliable and efficient
communication circuits. Besides mobile communication, these devices also make extensive use
of internet resources. This yields an increase in the amount of used data, which somehow has
to get to the phone and back again. For this, wireless standards are extended and improved (or
created) to provide the needed data rates. Examples are EDGE and LTE.

1



1.1. Motivation

It is, obviously, not enough to define new standards, they also have to be implemented. For
this, new systems and circuits have to be developed in order to enhance previous system
performances.

Furthermore, not only signal processing is now done by digital architectures, but also “classical”
analog domains are becoming increasingly digital.

As will be seen in the course of this work, electronic noise plays in important role in high
throughput communication systems.

1.1. Motivation

Figure 1.1 shows the die photographs of an two different LC oscillator, both operating in the
same frequency range (around 1GHz). Even without any knowledge of integrated circuits and
chip design, one would immediately notice the coils on the chips, which take a significantly
amount of space. In factor, almost half of the chip area is occupied by them, perhaps even more
for the chip in the right image.

The oscillators shown here consist of a resonator and some active circuitry, furthermore a buffer
to provide a low output impedance. The resonator is made from a coil (the “balanced inductor”
in the left image) and a capacitor (the “varactor” and the “switched-cap array”, both also in the
left image), whereas the buffer and the active circuitry are implemented with transistors. Since

Figure 1.1. – Die photographs of two different LC oscillators of approximately the same operating
frequency (1GHz). Left image: [HSA01], right image: [Tie06]

transistors can be used in order to build complex circuits and signal processing units, it seems
excessive to allocate so much space for one device (the inductor) and not use this space to build
interesting and useful systems. Now, why is so much chip area “wasted” by the inductor? What
purpose does it serve and why can’t it be replaced by something substantially smaller? This

2



work will try to answer these question and provide some insights on alternative designs where
bulky inductors are not needed.

1.2. Overview

This work is structured as follows: First, some basic concepts about modern communication
systems and frequency synthesizers will be presented. Furthermore, fundamental mathematics
used will be discussed. The second part is an extensive treatment of oscillators. This includes
mathematical models, topologies and an more in-depth discussion on phase noise. These
concepts will be shown by studying simple examples. The following chapter will discuss passive
and, more importantly, active inductors to be used in oscillators. After this, oscillators using
active inductors will be presented. Here, a specific topology will be presented, which results
will be shown in the following chapter. Lastly, a conclusion will be drawn as well as further
prospects.
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Chapter 2.

Foundations

This chapter will give a short overview of modern communication systems. For this, general
information on communication concepts will be given as well as a basic introduction to phase-
locked loops.

2.1. Introduction to modern communication systems

What is wireless communication and how does it work? For the user of communication systems,
the inner mechanisms are abstract and unknown, maybe somewhat “magical”: The data goes
in one device and appears (more or less instantly) at another. The data can be anything from
images, speech signals, texts and more. Figure 2.1 shows this structure. The transmitter needs

Transmitter ReceiverData Data

Figure 2.1. – Basic structure of wireless communication

to process the data and impose it on a carrier signal or simply carrier. This is a special signal
which acts as a transporter and brings the data from the transmitter to the receiver. There, the
data gets extracted from the carrier signal and is again available to the user. There is more to
the whole picture, of course, but here only a few important aspects shall be covered.

The carrier is a periodic signal and therefore can be characterized by its frequency. The fre-
quency distribution of carrier signals is significant in todays communication systems, where the
allowable ranges for different types of communication (for example WiFi or radio) are specified
by wireless communication standards. This means that different standards operate in different
frequency intervals or bands.

An important mechanism is up-/downconversion, which describes moving the signals of interest
to a different frequency band. This is for several reasons: First, this can be used to achieve

5



2.1. Introduction to modern communication systems

much more efficient communication since losses in transmission depend on the frequency of
the transmitted signal. Secondly, it is impossible to transmit signals, which basebands (the
spectrum of the data) include DC values (𝑓 = 0), so in these cases a conversion is needed.
Furthermore, shifting baseband signals to different frequencies allows simultaneous use of
different communication standards, which themself consist of many channels. Therefore, a
much higher data throughput can be achieved by using conversion of frequencies.

Channels

Upconversion

Baseband

𝑓

𝑆

Figure 2.2. – Frequency translation of baseband signals (upconversion)

Figure 2.2 reveals this principle. Three competing transmissions with the same baseband (the
data is different, but needed bandwidth is the same) are shown. If there is a different channel for
each transmitter, the data can be transmitted simultaneously without interference. A receiver
has to pick the right channel, read out the channels after each other or use more than one signal
path for simultaneous reception. This shows that receivers must be selective in frequency which
usually leads to systems being sensitive only to specific frequency bands. Broadband systems
incorporating a large frequency range are in general harder to implement and less efficient.

The conversion process is done through a mixer, which generates periodic signals with the sum
and the difference of the frequency of the input signals (and possible more harmonics with
all thinkable integer frequency combinations (𝑛𝜔1 + 𝑚𝜔2). A simple mixer can be built from
multiplying two signals (𝑢(𝑡) is a generic signal):

𝑢(𝑡) = 𝑢0 cos(𝜔𝑠𝑡)
𝑢𝑚(𝑡) = 𝑢(𝑡) ⋅ cos(𝜔𝑚𝑡)

=
𝑢0
2 (cos((𝜔𝑚 − 𝜔𝑠)𝑡)+ cos((𝜔𝑚 + 𝜔𝑠)𝑡)) (2.1)

The mixing process generates two new (translated) signals at the frequencies 𝜔2−𝜔1 and 𝜔2+𝜔1,
therefore creating one signal with higher and one with lower frequency. The unwanted signal
(depending on up-/downconversion) can easily be filtered out. An upconverted signal can be
downconverted by the same process, in this case filtering out the high frequency part. Note
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that it is of no importance whether the mixing frequency is higher or lower than the signal
frequency.

The described conversion process can be used in two different ways: Direct or homodyne
conversion and heterodyne conversion.1 Homodyne conversion shifts signals directly from
the baseband to the transmission frequency and back, where heterodyne architectures use
an intermediate frequency (IF). This has some advantages over the direct principle: In tuned
receivers many different frequency channels and bands can be detected, but by converting them
all to a common frequency band (the intermediate frequency) the exact same post-processing
circuitry can be used for all signals. Furthermore, this allows higher selectivity, since filters for
lower frequencies can be implemeneted with narrower bands.

The two main building blocks of communication systems are the receiver and the transmitter
(often combined as transceiver ). They serve the complimentary purposes: The transmitter takes
a signal, converts it to a higher frequency and transmits the converted signal with the means
of an antenna. The receiver senses a signal at the antenna and downconverts it back to the
baseband. The baseband signal in both systems is usually processed by a digital unit.

Figure 2.3 shows a typical heterodyne receiver. In the high frequency part of the system
(the RF part), there is the antenna, which picks up the transmitted signal. This signal gets
filtered to remove all out-of-band signals. Then, the remaining signal gets amplified by a low
noise amplifier (LNA) and downconverted through the mixer which is driven by the local
oscillator (LO). Now the signal lies in the intermediate frequency and gets further processed
here, for example through a demodulator. Afterwards, the baseband signal carrying the actual
information is processed. The last two steps are often combined, in this case the signal after
the downconversion is converted to the digital domain by the means of an analog-to-digital
converter (ADC), so that the demodulation and the processing both take place in the more
robust digital world.

Filter Filter Demodulator Processor

RF IF Baseband

Figure 2.3. – Structure of a modern heterodyne receiver

1 The term homodyne originates from the greek words homo (same) and dyne (mixing), hetero means different.
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2.2. Frequency synthesizers: Phase locked loops

2.2. Frequency synthesizers: Phase locked loops

In figure 2.3, many important building blocks of communication systems can be seen, which all
are not trivial to design. This work will focus on the local oscillator. In order to select many
different channels and even different frequency bands of different communication standards, the
oscillator must provide a very frequency-stable signal, since fluctuations in frequency directly
relate to errors in downconversion. Furthermore, the oscillator needs to be tunable for the
selection of a channel. While it is possible to build a relatively stable fixed oscillator, it is hard
to acchieve both stability and tunability. How is this acchieved in modern communication
systems? The answer to this question is to build a frequency synthesizer, which is based on a
phase-locked loop.

A phase-locked loop is a negative feedback system controlling frequencies. It works by compar-
ing a (tunable) signal two a fixed reference signal and adjusting the tunable signal until both
match.

Figure 2.4 shows a generic model of a phase-locked loop. This model consists of four basic
building blocks: First, a phase detector, which produces the phase difference of the two signals
𝜙1 and 𝜙2 as output. This output signal incorporates both high and low frequency contents,
therefore a filter is used to remove unwanted signals. The output of the lowpass filter is then
fed into a signal-controlled oscillator (SCO), producing a periodic signal, whose frequency is
dependent of the phase difference of the two input signals. The divider makes it possible for the
SCO to use higher frequencies than the reference signal.

This structure forms a negative feedback loop: in the case of ideal components, the frequency of
the output signal will be the frequency of the input signal multiplied by the division factor. The

Phase
Detector

Lowpass
Filter SCO

Divider

𝑢PD(𝑠) 𝑢LP(𝑠) 𝑢osc(𝑠)

𝜙out

𝑢div(𝑠)

𝜙2
𝜙1

Figure 2.4. – Blockdiagram of a phase-locked-loop

signal-controlled oscillator can be controlled in many different ways; typical implementations
are a voltage-controlled oscillator (VCO) or a digitally-controlled oscillator (DCO), but other
types are possible (for example current-controlled oscillators).

The phase detector produces a signal proportional to the phase difference of the two signals 𝜙1
and 𝜙2:

𝑢PD(𝑠) = 𝑘PD ⋅ (𝜙1 − 𝜙2)
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This signal gets shaped by the lowpass filter, which also removes unwanted high frequency
components created by the phase detector. The corresponding output is found by multiplying
the signal with the transfer function of the filter:

𝑢LP(𝑠) = 𝐻LP(𝑠) ⋅ 𝑢PD(𝑠) = 𝐻LP(𝑠) ⋅ 𝑘PD ⋅ (𝜙1 − 𝜙2)

The signal-controlled oscillator produces a periodic signal with a frequency proportional to the
input signal. Frequency and phase are related to each other through differentiation/integration:
The phase is the time-domain integral of the frequency. A signal with constant frequency will
have a phase variing linearily in time. Therefore, in phase domain, the oscillator operates as
integrator:2

𝑢osc(𝑠) =
𝑘osc
𝑠

𝐻LP(𝑠) ⋅ 𝑘PD ⋅ (𝜙1 − 𝜙2) (2.2)

The divider simply adds another factor 𝑁:

𝑢div(𝑠) =
1
𝑁
⋅
𝑘osc
𝑠

𝐻LP(𝑠) ⋅ 𝑘PD ⋅ (𝜙1 − 𝜙2)

This signal 𝑢div(𝑠) is exactly 𝜙2, so we can calculate a transfer function from the input signal 𝜙1
to the output signal 𝜙2:

𝜙2 =
1
𝑁
⋅
𝑘osc
𝑠

𝐻LP(𝑠) ⋅ 𝑘PD ⋅ (𝜙1 − 𝜙2)

⇔ 𝐻(𝑠) =

1
𝑁
⋅
𝑘osc
𝑠

𝐻LP(𝑠) ⋅ 𝑘PD

1 + 1
𝑁
⋅
𝑘osc
𝑠

𝐻LP(𝑠) ⋅ 𝑘PD

=
1
𝑁
⋅ 𝑘osc𝐻LP(𝑠) ⋅ 𝑘PD

𝑠 + 1
𝑁
⋅ 𝑘osc𝐻LP(𝑠) ⋅ 𝑘PD

=
1

1 + 𝑠 𝑁
𝑘osc𝑘PD𝐻LP(𝑠)

(2.3)

As can be seen, the exact type of transfer function depends on the type of loop filter. For a
low-pass filter, the derived transfer function will also show a low-pass characteristic.3

Equation 2.3 shows the transfer function from 𝜙1 to 𝜙2, which is approximately 1 for low
frequencies. Therefore, if the phase of the reference signal and the (divided) phase of the
synthesized signal are equal, the phase is locked4. If the phases are the same, also the frequencies

2Admittedly, this “proof” lacks formality. For this discussion, however, this analysis is sufficient. The integrating
nature of the oscillator for phase signals will be addressed again later on. See section 2.3.2 and 3.7.4.

3Imagine the simplest case: A one-pole filter. The pole of this filter will shift in frequency but stay a pole.
4There may be a constant offset.
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2.2. Frequency synthesizers: Phase locked loops

of the two signals will be equal. This means that (mentally moving before the divider) the
output signal of the PLL (the signal coming out of the oscillator) has a 𝑁-fold frequency of the
input signal. If the reference signal is perfect, the non-idealities of the SCO play are not of
concern. Now, why is this sensible to do? Why not directly use a reference signal with the right
frequency? The key here is the divider. Since the output of the PLL is a signal with increased
frequency, a PLL with a variable (programmable) divider provides a system which performs
programmable frequency multiplication. Therefore this configuration is called a frequency
synthesizer.

An major property of a phase-locked loop is that it stabilizes the frequency of oscillators due to
its negative feedback. This has several important consequences: Any static frequency error of
the oscillator due to process mismatch and other non-idealities is fixed. The control signal of
the SCO will be adjusted accordingly, so that again the phases of the two signals match.

The oscillators (both the reference and the SCO) exhibit noise in the phase domain, the so-
called phase noise. In general, the power spectral density of this noise gets shaped by the
corresponding transfer function of the PLL. Here, the transfer function from the reference to
the output and from the SCO to the output are analyzed. The first transfer function is already
known: It simply is the transfer function that was previously derived.

The second transfer function (from the SCO to the output) is given by the following equation,
which is derived from equation 2.2 with 𝜙1 = 0 and an addition of a noise signal (𝜙𝑁):

𝜙out = −
𝑘osc
𝑠

𝐻LP(𝑠) ⋅ 𝑘PD ⋅ 𝜙out + 𝜙𝑁

⇔ 𝜙out = 𝜙𝑁 ⋅
1

1 + 𝑘osc
𝑠
𝐻LP(𝑠) ⋅ 𝑘PD

The simplest low-pass filter is of the form

𝐻LP(𝑠) =
1

𝑠 + 𝜔𝑐

With this, both transfer functions can be written as

𝐻1(𝑠) =
𝑘PD𝑘osc𝑁

𝑘PD𝑘osc + 𝑠𝑁 + 𝑠2 𝑁
𝜔𝑐

𝐻2(𝑠) =
𝑁 𝑠 + 𝑠2 𝑁

𝜔𝑐

𝑘PD𝑘osc + 𝑠𝑁 + 𝑠2 𝑁
𝜔𝑐

𝐻1(𝑠) shows a low-pass characteristic, while 𝐻2(𝑠) has a high-pass behaviour. This means that
phase errors from the input (the reference) are filtered out at high frequency (𝐻1(𝑠)) and phase
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errors coming from the SCO are suppressed at low frequencies. Phase noise is a type of phase
error and therefore gets shaped by the corresponding transfer function. Figure 2.5 shows a
typical phase noise profile of the output signal of a phase-locked loop. The dashed lines show
the unfiltered phase noise of both the reference oscillator and the SCO with the SCO showing a
higher amount of noise. The dotted lines are the respective phase noise profiles after filtering,
the solid line depicts the total phase noise of the frequency synthesizer. As can be seen, the

Reference dominates

SCO dominates

PLL bandwidth

𝜔

ℒ

Figure 2.5. – A typical phase noise profile of a phase-locked loop

reference phase noise is significantly lower than the phase noise of the SCO. This is a sensible
assumption, since the reference is used as stable signal, to which the synthesized signal can be
compared to. Note that the phase noise of the SCO gets filtered out below the PLL bandwidth
and becomes flat while the reference phase noise get filtered out at frequencies above the PLL
bandwidth. Therefore, the slope here increases. More information on phase-locked loops can be
found for instance in the book by Roland Best ([Bes07]) or the book by Floyd Gardner ([Gar05]).
A quick overview with basic information is also provided in Razavi’s RF microelectronics book
([Raz12]), which serves well as a light introduction.

2.3. Basic concepts in communication

In this section a short overview of important aspects of wireless communication will be given.
Some aspects are not directly related to the design of oscillators, but do add constraints to it.
Furthermore, it helps in understanding RF circuits and design choices.

2.3.1. Multiple access techniques

How do many users of a certain wireless standard (for example GSM) operate simultaneously?
Since there may be thousands of users but not so many channels, there has to be a different
approach for solving this problem. The usual techniques incorporate some sort of division
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2.3. Basic concepts in communication

of available ressources of which there are basically three. This is best illustrated by an often
used analogy (see for example [Raz12]): Imagine a group of people in a room talking to each
other, perhaps at a party. Now there are several different ongoing discussions involving smaller
groups. How do the groups distinguish between the message meant for them and the message
from another group? The obvious answer is power (volume), and its property of decreasing
with increasing distance to the transmitter. However, this is not the approach which will be
discussed here. One way to communicate properly would be to only speak at certain times:
Every group gets a time slot in which they are allowed to talk, perhaps through the use of an
object to symbolize the right to speak (a token). Another possibility would be that every group
has to speak in a different pitch, so you can concentrate only on voices with a low or high pitch.
Lastly, the groups could speak in different languages for separation of content.

The three mentioned methods are used in wireless communications and are called time-division
multiple access (different times), frequency-division multiple access (different pitches) and code-
division multiple access (different languages). Frequency-division multiple access or FDMA
was already introduced: The use of different channels within a designated frequency band. As
explained before, this is often not enough.

With time-division multiple access or TDMA only one transmitter is active at a time. The
individual transceivers receive a time slot, in which they are allowed to make a transmission.
For this, clever techniques for finding the time slots have been developed, including for example
a random waiting time with sensing for a free channel.

Lastly, code-division multiple access or CDMA assigns different codes to the baseband signal
of different transmitters. With the right encoding scheme, it is possible that the unwanted
components are canceled out and therefore ignored by the receiver. This technique can be
combined with FDMA by periodically switching the transmission channel according to code.
This is called frequency hopping.

2.3.2. Modulation schemes

Modulation is the process of imposing a baseband signal onto a carrier in order to shift its
spectrum in frequency. It is therefore highly related to upconversion and demodulation, which
reverses the process of modulation, is related to downconversion. Here, basic analog modulation
schemes are presented with a short discussion of digital modulation. The three basic analog
modulation types are amplitude (AM), phase (PM) and frequency (FM) modulation.

Amplitude modulation changes the amplitude of a carrier signal 𝑦𝑐(𝑡) according to a modulation
signal 𝑦𝑚(𝑡). There are two main types of amplitude modulation, one in which the carrier is
transmitted, one where it is not. This difference is simple in mathematical terms: General
amplitude modulation can be expressed by:

𝑦AM(𝑡) = (1 + 𝑦𝑚(𝑡))𝐴0𝑦𝑐(𝑡) = (1 + 𝑦𝑚(𝑡))𝐴0 cos(𝜔0𝑡)
= 𝐴0 cos(𝜔0𝑡) + 𝐴0𝑦𝑚(𝑡) cos(𝜔0𝑡) (2.4)
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2.3.2. Modulation schemes

The first part of equation 2.4 is simply the carrier signal, the second part shows the modulated
signal. If the carrier is not transmitted (using so-called double-sideband supressed-carrier trans-
mission), the first part reduces to 0 and only the modulated signal remains. The multiplication
of the modulation signal with the carrier signal translates the spectrum of the modulation signal
(the baseband signal) to center frequencies of −𝜔0 and 𝜔0.

Phase and frequency modulation are similar in both influencing the momentary phase or
frequency of a carrier, but they have subtle differences. The distinction depends on the argument
of the cosine in equation 2.5 and 2.6.

𝑦PM(𝑡) = 𝐴0 cos(𝜔0𝑡 + 𝜙(𝑡)) (2.5)

𝑦FM(𝑡) = 𝐴0 cos(𝜔0𝑡 +
𝑡
∫
−∞

𝜙(𝜏 ) d𝜏 ) (2.6)

The argument of the cosine is a phase Φ (with its unit of rad) and the instantenous frequency
can be found by taking the derivative:

𝜔(𝑡) =
𝜕
𝜕𝑡
Φ

For linear modulation signals 𝜙(𝑡) = 𝜙0𝑡, the difference between PM and FM is clearly visible:

𝜔PM(𝑡) = 𝜔0 + 𝜙0
𝜔FM(𝑡) = 𝜔0 + 𝜙0𝑡

While the instantenous frequency of the phase-modulated signal stays constant, it varies over
time in the case of the frequency-modulated signal. It is therefore said that for PM the so-called
excess phase is proportional to the modulation signal while for FM the so-called excess frequency
shows this property. The excess phase and frequency are the additional part of the cosine
argument and its derivative, respectively. See the treatment on analog modulation in [Raz12].

Phase and frequency modulation both yield a complex spectrum, which is not easily calculated.
There is a common narrowband-FM approximation where it is assumed that the modulation
is small compared to the total phase argument of the cosine. In this case, FM and PM yield a
frequency translation similar to amplitude modulation where the baseband signal is centered
around the carrier frequency with its original bandwidth.

This treatment of modulation is very brief and only covers analog modulation. The digital
counterparts of the here introduced modulation concepts have slightly different names but
are basically the same. The difference lies in the nature of the baseband signal, where in
one case its analog and in the other its digital. The digital counterparts of AM, PM and FM
are called “amplitude shift keying” (ASK), “phase shift keying” (PSK) and “frequency shift
keying” (FSK). Digital signals and -modulation are used because they offer advantages in their
lower susceptibility to noise. Also, if digitally modulated signals are used, many parts of the
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2.4. Mathematical foundations

transceiver chain operate in the digital domain, which offers the usual benefits of digital over
analog design.

2.4. Mathematical foundations

2.4.1. Review of system theory

A system can be any abstraction of a physical entity, where an input and an output can be
assigned. In this work (and generally in electronics), the term system refers to a circuit or a
collection of circuits. This abstraction is useful in order to simplify the analysis and to seperate
problems and their solution into system level and implementation level.

Linear, time-invariant systems

A linear, time-invariant system has two important properties: A scaled input signal yields
a equally scaled output signal and a sum of two input signals yields the sum of the two
corresponding output signals. This is called linearity:

𝑦(𝑡) = 𝑆{𝑎𝑥1(𝑡) + 𝑏𝑥2(𝑡)} = 𝑎𝑆{𝑥1(𝑡)} + 𝑏𝑆{𝑥2(𝑡)}

The second property concerns time-invariance: It is of no significance if a input signal is inserted
into the system now or tomorrow. The time of appliance does not alter the response, only shifts
it in time:

𝑦(𝑡 − 𝑡0) = 𝑆{𝑥1(𝑡 − 𝑡0)}

The response of a LTI system to an input signal is related to its impulse response ℎ(𝑡), which is,
as the name implies, the response of the system to an dirac impulse at the input. With this, the
response for arbitrary input signals can be found by using convolution:

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡) =

∞

∫
−∞

ℎ(𝑡 − 𝜏)𝑥(𝜏 ) d𝜏

In the laplace domain the convolution becomes a multiplication and the impulse response
becomes the transfer function 𝐻(𝑠). This function is characterized by three parameters: Static
gain, poles and zeros. It can be written as a rational function:

𝐻(𝑠) = 𝐻0

𝑁𝑧
∏
𝑖=1

(𝑠 − 𝑧𝑖)

𝑁𝑝

∏
𝑖=1

(𝑠 − 𝑝𝑖)
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2.4.1. Review of system theory

The location of the poles and zeros relates to important properties of the system, most dominantly
stability. Poles in the right half-plane (zeros and poles are complex, therefore for poles where
Re(𝑝) > 0), the system becomes unstable. This is especially critical in closed-loop systems, since
there poles can vary their position depending on loop gain.

Another important property of LTI-systems is the fact that they don’t change the frequency
content of a signal. Though the amplitudes of existing signals will be changed, there will never
be new frequencies introduced. This means that if a LTI-system is driven by a sinusoid of a
frequency 𝜔0, the output of the system will also be a signal of the frequency 𝜔0 (with possible
different amplitude and phase).

Non-linear and time-varying systems

In a time-variant system, the response to a stimulus depends on the time the stimulus is applied.
The output due to the same input signal applied today and tomorrow can be different. This
does not necessarily mean that linearity does not hold. A system can perfectly be linear, but
time-variant. This can be modeled by using a impulse response, which depends on the time the
input is applied. The convolution integral still holds for computing the output of the system as
response to an input, but it changes slightly:

𝑦(𝑡) = ℎ(𝑡, 𝑡0) ∗ 𝑥(𝑡) =

∞

∫
−∞

ℎ(𝑡 − 𝜏 , 𝑡0)𝑥(𝜏 ) d𝜏

Since there are now many (infinite) impulse responses, there is no need to shift the “original”
impulse response in time. Therefore, some authors omit the time shift within the convolution,
assuming the ℎ(𝑡, 𝑡0) is “at the right time” ([HL98], [Raz12, page 569]):

𝑦(𝑡) =

∞

∫
−∞

ℎ(𝑡, 𝜏 )𝑥(𝜏 ) d𝜏

Different from LTI-systems, linear time-variant systems can create different frequencies than
present in the input. This is not that surprising: If the impulse response changes with time,
it also changes within the convolution integral. If now the input signal varies with time, the
response does too, but in a possible different manner.

A non-linear system (but perhaps time-invariant) has transfer characteristics, which can’t be
expressed by linear functions. Often, these systems are approximated as linear systems in certain
operating regions, which is called small-signal analysis or approximation. This is an important
circuit design technique, for example for amplifier design. Here, the system is approximated as
linear and the validity of this assumption is checked later on, possible resulting in a redesign.

While the small-signal analysis is a powerful tool, it comes at a price. There are certain
phenomena, that can’t be explained or predicted with small-signal models. Care has to be
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2.4. Mathematical foundations

taken in order take this into consideration during design. As will be shown later, oscillators are
inherently non-linear systems.

Similar to time-variant systems, a non-linear system can create harmonics, therefore alter
the frequency content of input signals. Take for instance the system below with a non-linear
transfer characteristic:

𝑦(𝑡) = 𝑎 𝑥(𝑡) + 𝑏 𝑥3(𝑡)

Here, 𝑦(𝑡) is the output signal of the system with an input signal of 𝑥(𝑡). 𝑎 and 𝑏 are constants.
If this system is driven by a pure sinusoid of the frequency 𝜔0, the output will also contain
higher frequency components:

𝑦(𝑡) = 𝑎 cos(𝜔0𝑡) + 𝑏 cos3(𝜔0𝑡)

= 𝑎 cos(𝜔0𝑡) +
𝑏
4(

3 cos(𝜔0𝑡) + cos(3𝜔0𝑡))

= (𝑎 +
3𝑏
4 ) cos(𝜔0𝑡) +

𝑏
4
cos(3𝜔0𝑡)

Besides altering the amplitude of the main frequency component (𝜔0), a new component with
the threefold frequency occurs. Therefore, a standard test of linearity is the analysis of the
frequency components of the output of a system. For this, a single-tone or a two-tone test can be
used, where the latter is specifically useful in narrow bandwidth systems, since the harmonics
(which have a significantly higher frequency) of a single tone are possibly filtered out already
at observation frequencies. See [Raz12, page 14—35] for a deeper discussion on non-linearity.
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Chapter 3.

Oscillator Fundamentals

In this chapter, an overview about general oscillator concepts such as the barkhausen crite-
rions and amplitude stabilization will be given. More important for this work, phase noise
will be explained and analyzed as well. The second half of the chapter deals with different
implementations of oscillators with a focus on on-chip implementations.

3.1. Introduction

What exactly is an oscillator? It is a system generating periodic waveforms of a specific kind.
It is important to notice that it does this in a deterministic and controllable way. A negative
feedback system can become unstable, but this results in unwanted behaviour. Here, precautions
have to be taken in order to ensure stability. This is usually done by analyzing the phase or
gain margin of associated blocks within the system. However, since negative feedback systems
should be stable and any instability is undesired, the generation of parasitic oscillations is
not considered as oscillator. For proper oscillators, similar design methodologies can be used,
but as will be shown, the systems have fundamental differences to classical negative feedback
systems.

3.2. Feedback Model

Consider the basic feedback model in figure 3.1. It is often use to explain feedback mechanisms
and mostly applied for negative feedback. However, oscillators can be conveniently abstracted
in this manner.

𝐴(𝑠)

𝑘(𝑠)

+
−

In Out

Figure 3.1. – Block diagram of basic feedback model
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The system consists of a forward path with the transfer function 𝐴(𝑠), a feedback network which
changes the signal by its transfer function 𝑘(𝑠) and a summing point. Here, the difference (since
the polarity of the feedback signal is reversed) of the input and the feedback signal is obtained
and fed into the forward path. Using basic system theory, the transfer function from input to
the output of the entire system is obtained:

𝐻(𝑠) =
Out
In

=
𝐴(𝑠)

1 + 𝑘(𝑠)𝐴(𝑠)

While designing negative feedback systems, the transfer function must be stable, which means
that a bounded input signal produces a bounded output signal (BIBO stability). Now, this system
should become unstable in order to generate periodic signals. For this, the denominator of
𝐻(𝑠) should become 0. In order to satisfy the condition 1 + 𝑘(𝑠)𝐴(𝑠) = 0, we must consider the
complex nature of both 𝑘(𝑠) and 𝐴(𝑠). The above condition is met if both the product of the
magnitudes is 1 and the overall phase shift is a multiple of 180°:

1 + 𝑘(𝑠)𝐴(𝑠) = 0 = 1 + ||𝑘(𝑠)𝐴(𝑠)|| ⋅ exp(𝑗 ⋅ ∠ 𝑘(𝑠)𝐴(𝑠))
||𝑘(𝑠)𝐴(𝑠)|| = ||𝑘(𝑠)||||𝐴(𝑠)|| = 1

∠ 𝑘(𝑠)𝐴(𝑠) = 𝑛 ⋅ 180° 𝑛 ∈ ℕ

These two equations are called “barkhausen criteria”. This is straightforward: In order to ensure
stable1oscillations, the magnitude of the signal should not change by passing through the loop,
therefore the loop gain should be exactly 1. Furthermore, at the summing point the two signals
need to be exactly out-of-phase (180° difference) in order to subtract two signals of opposite
phase.

Since an oscillator should produce a waveform with a constant amplitude, the argument of the
functions above in the laplace domain becomes a pure sinusoidal frequency (𝑠 = 𝑗𝜔). If the
argument had a real part, the amplitude of the output of the system would be either increasing
(Re(𝑠) > 0) or decreasing (Re(𝑠) < 0). Therefore, the closed-loop system must have its poles lying
on the imaginary axis to be working as an oscillator.

3.3. Non-linearities

The previous descriptions showed how a system can oscillate under specific conditions re-
garding linear analysis. There is, however, no discussion of oscillator start-up and amplitude.
Additionally, it was shown that the poles of the closed-loop system lie on the imaginary axis,
which seems prone to errors. How can the position of the poles be guaranteed, while any small
disturbance causes the oscillation to develop unwanted instabilities or decay with time? This
question will be answered in this section.

1“Stable” in this context means undamped, predictable oscillations, not stable in system theory sense. Still, the
amplitude should be bounded and well defined, for this reason this expression is used.
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Consider the following three pole-zero-diagrams in figure 3.22, which show the same system
(with the same pole-zero-distribution) at different values of loop gain. The left graph shows a
damped system, here all poles lie in the left half plane. It shows a stable3 system. This means
that for whatever reason occurring oscillations will decrease until a steady-state is reached. The
right graph shows the opposite: here the existing poles lie in the right half plane. This means
that present oscillations will grow in amplitude unbounded.4 The remaining graph in the middle
shows the third case, where existing oscillations will be neither damped nor amplified. This
system preserves oscillations at some frequencies. This, as was already shown in the previous
section, ensures stable oscillations and is the behaviour of an oscillator.

Re

Im

Re

Im

Re

Im

Figure 3.2. – Pole-Zero-Diagram of a feedback system in three different states

Now consider the root-locus plot in figure 3.3. There are three poles in this (closed-loop) system,
which is stable for low values of loop gain (the initial position of all poles lies in the left half-
plane). Varying their position with the loop gain (or the feedback factor), the two rightmost
poles eventually shift into the right half plane and the overall loop becomes unstable. With this,
any occurring signal at the right frequency will be amplified infinitely. At certain amplitudes
however, the loop gain will degrade due to clipping and operation out of the bounds of the
operating point. This reduction of loop gain pushes the poles back into the left half plane. Now
the loop gain is again too small and the oscillation amplitude decreases, which in turn again
shifts the poles towards the right half plane. On average, the poles are located at exactly the
imaginary axis. This ensures a steady-state oscillation.

Next, consider the trajectory of a closed-loop system in state-space. Figure 3.4 shows the
state-space trajectory of an system with two state variables, in this case 𝑥 and 𝑦. These state
variables could be, for example, the voltage at the terminals of an inductor and the current
trough it within a LC oscillator. The two images show a damped system (left) and an unstable
system (right). In the damped system (which is stable in the sense of system theory), the energy
of the state variables will eventually be dissipated and the system will enter a stable state where
both state variables are zero. In the unstable system, however, the energy of the state variables
will rise infinitely. Here, both curves show spirals, which is due to the sinusoidal waveform and
the change of amplitude. A perfect sinusoidal waveform with two state variables yields a circle.
Other types are possible, and more likely.

2These are closed-loop poles.
3In system theory sense.
4In real systems there will be some limiting factor since the described case is obviously not possible.
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3.4. An oscillator introductory study using a simple LC resonator

Re

Im

Figure 3.3. – Root locus plot

𝑥

𝑦

𝑥

𝑦

Figure 3.4. – State-space trajectories of damped (left) and unstable (right) systems

To summarize the previous analyzations: In any oscillator, there are poles near the imaginary
axis, determining the intrinsic frequency of the oscillator. In order to achieve stable oscilla-
tions (which again means predictable and controllable oscillations with constant, non-zero
amplitude), these poles have to be stabilized to lie – at least on average – exactly on the imagi-
nary axis. These two parts will be called the resonator and the energy restoring element. The latter
fundamentally shows non-linearities which are mandatory for the function of every real-world
oscillator.

3.4. An oscillator introductory study using a simple LC
resonator

The observations made up to here will be demonstrated by using a simple oscillator model,
which shows basic and elementary concepts of oscillators. For this, a LC resonator will be
considered in increasing complexity: First, an ideal tank will be analysed. After that, tank losses
and their impact on the oscillation will be introduced. Lastly, a real oscillator will be shown by
using an non-linear circuit element. This element is, as already shown necessary in order to
speak of an oscillator.
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3.4.1. The ideal LC resonantor

3.4.1. The ideal LC resonantor

The left side of figure 3.5 shows an ideal LC resonantor, consisting solely of a capacitor and a
inductor. The output voltage is measured across both devices, the output current is assumed to
be zero. Therefore, the following differential equation can be derived:

𝐿𝐶

𝑖𝐶
𝑣out

𝑖𝐿
𝑡

𝑣, 𝑖

Figure 3.5. – Oscillating system consisting of an ideal inductor and capacitor

𝑖𝐶 = 𝐶
𝜕
𝜕𝑡
𝑣𝐶 = 𝐶

𝜕
𝜕𝑡
𝑣out

𝑣𝐿 = 𝑣out = 𝐿
𝜕
𝜕𝑡
𝑖𝐿 = −𝐿

𝜕
𝜕𝑡
𝑖𝐶 = −𝐿

𝜕
𝜕𝑡(

𝐶
𝜕
𝜕𝑡
𝑣out) = −𝐿𝐶

𝜕2

𝜕𝑡2
𝑣out

⇔ 0 = 𝑣out + 𝐿𝐶
𝜕2

𝜕𝑡2
𝑣out (3.1)

Equation 3.1 can be solved by5

𝑣out = 𝑣0 cos(𝜔0𝑡)

𝑖𝐶 = 𝐶
𝜕
𝜕𝑡
𝑣out = −𝑣0𝐶𝜔0 sin(𝜔0𝑡)

For this solution, an initial condition of the following form was used: 𝑣out(𝑡 = 0) = 𝑣0 and
𝑖𝐶(𝑡 = 0) = 0. This sets the amplitude of the oscillation. Figure 3.5 shows the transient response
of the LC tank.

If there were an ideal implementation of this LC tank, the capacitor would still have to be
charged to an initial voltage in order to provide some energy for the oscillation. Though there
are no loss mechanisms in this circuit, there are also no energy restoring elements. For this
reason, the circuit consisting of an ideal LC tank can hardly be called an oscillator.

The ideal LC resonator can hardly be viewed as system, but in order to illustrate the system-level
consideration of last section, the circuit in figure 3.5 will be analyzed in this manner. For this,

5To be formally correct, a more general solution is required. For this discussion, this solution is sufficient.
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3.4. An oscillator introductory study using a simple LC resonator

the current at the terminals of the resonantor will be considered as input of the system, while
the voltage across the devices will stand for its output. Therefore, the following holds:

𝑉out(𝑠) = 𝐼in(𝑠) ⋅ 𝑍 (𝑠)

= 𝐼in(𝑠) ⋅
1
𝐶

𝑠
𝑠2 + 𝜔2

0
with 𝜔0 =

1

√𝐿𝐶

If 𝐼in(𝑠) = 𝑖0 (the corresponding time-domain signal is a dirac impulse), the output voltage is the
impulse response:

𝑣out(𝑡) =
𝑖0
𝐶
cos(𝜔0𝑡)

The poles of this system lie at

𝑠1,2 = ±𝑗𝜔0

which matches the above discussion on system level.

3.4.2. The lossy LC resonator

Now a non-ideal resonator is considered. The loss of the tank is modeled with a parallel resistor 𝑅.
ALthough there are better and more accurate models, this consideration is sufficient. See section
4.1 for a more detailed discussion.

Again, the differential equation describing the output voltage of the resonantor is derived. Now,
the current through the resistor needs to be considered.

𝑣out = 𝑣𝐿 = 𝐿
𝜕
𝜕𝑡
𝑖𝐿

𝑖𝐿 = −𝑖𝑅 − 𝑖𝐶 = −
𝑣out
𝑅

− 𝐶
𝜕
𝜕𝑡
𝑣out

𝑣out = 𝐿
𝜕
𝜕𝑡(

−
𝑣out
𝑅

− 𝐶
𝜕
𝜕𝑡
𝑣out) = −

𝐿
𝑅
𝜕
𝜕𝑡
𝑣out − 𝐿𝐶

𝜕2

𝜕𝑡2
𝑣out

⇔ 0 = 𝑣out +
𝐿
𝑅
𝜕
𝜕𝑡
𝑣out + 𝐿𝐶

𝜕2

𝜕𝑡2
𝑣out = 𝜔2

0𝑣out + 2𝜁𝜔0
𝜕
𝜕𝑡
𝑣out +

𝜕2

𝜕𝑡2
𝑣out

with

𝜔0 =
1
𝐿𝐶

𝜁 =
1
2𝑅√

𝐿
𝐶
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3.4.3. The lossy LC resonantor with energy restoring element

One solution of this differential equation is

𝑣out = 𝑣0 exp(−𝜁𝜔0𝑡) cos(𝜔0√1 − 𝜁 2𝑡) (3.2)

The above solution is sensible for values of 𝜁 < 1, for bigger values there will be no oscillation.
In the case of 𝜁 < 1, decaying oscillations can be seen. Note that this again requires proper initial
conditions to introduce some energy into the tank. As expected, this oscillation is damped, with
its rate of decay depending on the resistor 𝑅. A larger resistor leads to smaller losses and less
damping. Furthermore, as equation 3.2 shows, the oscillation frequency changes with losses
compared to the oscillation of the loss-less tank.

𝐿𝐶𝑅
𝑖𝐶𝑖𝑅

𝑣out

𝑖𝐿
𝑡

𝑣, 𝑖

Figure 3.6. – Oscillating system consisting of an ideal inductor and capacitor and a resistor

Again, the circuit is viewed as a system with current as input and voltage as output. The
calculation of the transfer function yields

𝐻(𝑠) =
𝑠𝐿𝑅

𝑅 + 𝑠𝐿 + 𝑠2𝐿𝐶𝑅
with its poles lying at

𝑠1,2 =
−𝐿 ± √𝐿2 − 4𝑅2𝐿𝐶

2𝑅𝐿𝐶

Fore reasonable values of 𝐿, 𝐶 and 𝑅 the term under the square root becomes negative, therefore
yielding complex-conjugate poles. This condition is important or otherwise the system would
show no oscillation at all, not even damped. This was also assumed in the solution of the
differential equation, where this condition was described as 𝜁 < 1. As intuitively expected, the
poles of the damped resonator move to the imaginary axis with 𝑅 → ∞, which then is the same
circuit as in the previous section.

3.4.3. The lossy LC resonantor with energy restoring element

The previous two section showed the oscillations of an resonator, both ideal and non-ideal. The
ideal tank differs from the non-ideal case in that it has no parallel resistor. There, sustainable

23



3.4. An oscillator introductory study using a simple LC resonator

oscillations with constant amplitude were possible. Since it is impossible to build circuits
without resistive losses, these losses must be compensated. Imagine a negative resistor was
introduced into the resonantor, which exactly matches the loss resistor. Both would cancel
out and leave only the ideal resonator, again producing an oscillation with constant amplitude.
However, the problem lies within the need of exact matching. How can this be achieved?
Furthermore, the question of how to implement a negative resistor remains.

In this section, a fictional negative resistor is used to built a real oscillator, where the amplitude
is stabilized in a negative-feedback-way. It will be shown how to special properties of this
mystical part help in solving two major problems of building oscillators: starting the oscillator
and stabilizing the amplitude.

For this discussion the non-ideal resonator of the previous section will be used again. This
time, a fourth part will be added, which symbolizes the negative resistor. The circuit in figure
3.7 shows the resulting structure, where the leftmost device denotes the negative resistor. As
before, the resonator shows losses in the form of the parallel resistor 𝑅.

𝐿𝐶𝑅𝐺 (𝑣)𝑣out 𝑡

𝑣, 𝑖

Figure 3.7. – Oscillator built from ideal resistor, capacitor and inductor as well as an nonlinear
active element for loss compensation

The non-linear element 𝐺 (𝑣) is the restoring element which compensates the losses of the tank.
Since a negative resistance has a current-voltage characteristic with a negative slope (at least in
some region), there are many possibilities in modelling such a characteristic. It will be shown
in section 3.5.2 that a sensible model is a inverted bell-shaped resistance profile 6. For small
voltages across the device it has its minimum resistance, which increases for larger voltage
amplitudes. The resulting current-voltage characteristic can be modelled by

𝐺(𝑣) = −𝐼0 tanh(
𝑔𝑚
𝐼0

𝑣)

which has a saturating character for large voltage amplitudes.

6Any shape that monotonically decreases for higher amplitudes is fine, for example a rectangular profile. However,
a smooth shape is preferable, if only for convergence improvements in simulations. See appendix B for a easy
and effective implementation of such a device.
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This circuit can now start without any starting voltages or currents (initial conditions). Though
it will need some kind of disturbance, the noise of the resistor and the non-linear element will
be enough to start the oscillator. For small amplitudes, the non-linear element will introduce
energy into the tank which is more than the lost energy in the resistor. Therefore, the amplitude
of the oscillator will increase, as can be seen in the right image of figure 3.7. At some point, the
lost energy will be the same as the energy introduced by the non-linear element. This is the
steady state of the oscillator, where the average transconductance of the non-linear element
will be the same as the conductance of the resistor.

The non-linearity of the negative resistor also solves the matching problem of the two resistances.
The oscillator will adjust its amplitude in a manner that the average introduced energy by the
non-linear element matches exactly the lost energy of the tank. This means that the amplitude
of the oscillation depends on the amount of lost energy. If the loss is higher (𝑅 is lower), but the
characteristic of the negative resistor stays the same, the amplitude must decrease. With this,
the circuit spends more time in the region of high energy return, which is needed to compensate
the loss. Therefore, the circuit in figure 3.7 is resistent to device parameter variations7. For
oscillations to exist, the only condition is that the minimum negative resistance must be smaller
than the loss resistance (amplitude-wise).

Now that the need for non-linear, negative resistor was developed, the next sectionwill introduce
a common implementation of such a device.

3.5. Negative Resistances – the Cross-Coupled Pair

All oscillators need some kind of mechanism for compensation of losses. The classical LC-
oscillator, for example, consists of a capacitor and an inductor in parallel. Both devices introduce
ohmic losses, which can be represented by a resistance. This resistance leads to damping, which
needs to be compensated. For this, a negative resistance will be introduced.

There are several methods of implementing negative resistances. They are built around the
fact that feedback changes the input and output impedances approximately by the loop gain
(division or multiplication, this depends on the type of feedback). If the feedback is positive,
the loop gain becomes negative and yields negative input and output resistances (see also
[Raz01])

3.5.1. Small signal model

Figure 3.8 shows an implementation of a cross-coupled pair using nmos-transistors, next to its
small signal model. Here, two parasitic elements are included, namely the output resistance
and the gate-source capacitance of the transistor, since these are major non-idealities. However,

7In that sense that the circuit is a proper oscillator. This is only a question of whether an oscillation occurs or not,
not a question of quality of the oscillation.
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3.5. Negative Resistances – the Cross-Coupled Pair

this inclusion is only for completeness, since often approximations can be made that neglect
these elements.

M1 M2

𝑉1 𝑉2

𝐶𝑔𝑠1 𝐶𝑔𝑠2𝑟𝑜1 𝑟𝑜2𝑣2 ⋅ 𝑔𝑚1 𝑣1 ⋅ 𝑔𝑚2

𝑣1 𝑣2

Figure 3.8. – Cross-coupled pair and its small signal model

The small signal model in figure 3.8 can be simplified by assuming that the circuit is symmetric
(for example 𝑔𝑚1 = 𝑔𝑚2 = 𝑔𝑚) and that the circuit is differentially balanced, so 𝑣1 = −𝑣2 = 𝑣in.
With this, the circuit reduces to its half circuit (see [Gra+09]), which can be seen in figure 3.9.

𝑖in = −
1
2
𝑣in ⋅ 𝑔𝑚 +

1
2
𝑣in ⋅

1
𝑟𝑜

+
1
2
𝑣in ⋅ 𝑠𝐶𝑔𝑠

𝑖in =
1
2
𝑣in(

1
𝑟𝑜

+ 𝑠𝐶𝑔𝑠 − 𝑔𝑚)

⇔ 𝑍in =
𝑣in
𝑖in

=
2

1
𝑟𝑜 + 𝑠𝐶𝑔𝑠 − 𝑔𝑚

= −
2𝑟𝑜

𝑔𝑚𝑟𝑜 − 1 − 𝑠𝑟𝑜𝐶𝑔𝑠
(3.3)

Equation 3.3 shows that 𝑍𝑖𝑛 consists, besides others, of a negative part. Neglecting 𝑟−1𝑜 and 𝐶𝑔𝑠,
𝑍𝑖𝑛 is a perfect negative resistor of the value 2

𝑔𝑚
. Since usually 𝑔𝑚𝑟𝑜 > 1, this approximation is

reasonable. For large frequencies the resistance becomes positive again. This has to be taken
into account so the negative resistance is provided in the wanted frequency range. The corner
frequency of the negative resistance, where the magnitude of the impedance starts to change

− 1

2
𝑣in ⋅ 𝑔𝑚 𝑟𝑜 𝐶𝑔𝑠

1

2
𝑣in

Figure 3.9. – Half circuit of the small signal model of the cross-coupled pair
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3.5.2. Large signal behaviour

significantly, can be calculated. For this, it is assumed that 𝑟−1𝑜 ≪ 1.

||𝑔𝑚 − 𝑗𝜔𝐶𝑔𝑠|| < √2𝑔𝑚 (3 dB-frequency)

√𝑔
2
𝑚 + 𝜔2𝐶2

𝑔𝑠 < √2𝑔𝑚

𝜔3 dB <
𝑔𝑚
𝐶𝑔𝑠

The usuable frequency range of the cross-coupled pair as negative resistance is limited by the
unity-gain frequency of the transistors. Therefore, the length and overdrive voltages of the
transistors needs to be chosen to match the frequency requirements.

3.5.2. Large signal behaviour

With the above small signal model only the input impedance at the operating point can be
calculated. If the behaviour of cross-coupled pair were perfectly linear, it could not be used to
build oscillators. As shown in section 3.3, non-linear behaviour is essential for oscillators.

Again, consider the circuit in figure 3.8. If the differential voltage increases, for example by rising
𝑉1 and lowering 𝑉2, one of the transistor will eventually turn off, while the other will conduct
more and more current (in this example, M1 turns off). Therefore, there are two extremes with
either side conducting a large current while the other side is turned off. Of course, there is a

𝑣in

𝑖in

𝑣in

|𝑧in|

Figure 3.10. – Characteristic curve of the negative resistance

smooth transition into this regions, so that the current-voltage characteristic resembles the
curve (left image) in figure 3.10. Here, the dashed line shows the curve of the equivalent (small
signal) resistor at the operating point (𝑣𝑖𝑛 = 0). For larger amplitudes, the slope of the curve
decreases, which leads to a smaller negative resistance.

The right image in figure 3.10 shows the derivative of the current-voltage characteristic, which
is the corresponding incremental resistance. Since the resistance is negative, the magnitude is
presented. Remember that a small resistor in a LC resonantor yields big losses, so on the other
hand a small negative resistor introduces big amounts of energy into the tank.
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3.5. Negative Resistances – the Cross-Coupled Pair

The voltage-current characteristic can be modeled by a tanh-function:

𝑖 = −𝐼0 tanh(
𝐺𝑚
𝐼0

𝑣)
which results in a incremental resistance of

𝑧in = (
𝜕
𝜕𝑣

𝑖)

−1
=

1
𝐺𝑚(tanh2(

𝐺𝑚
𝐼0

𝑣) − 1)

−1

=
1
𝐺𝑚

cosh2(
𝐺𝑚
𝐼0

𝑣)

As expected, for small values of 𝑣, the incremental resistance equals the inverse of the transcon-
ductance of the cross-coupled pair, where 𝐺𝑚 = 2𝑔𝑚.

3.5.3. Amplitude estimation of oscillators using the cross-coupled pair

The amplitude of an oscillator plays an important role in minimizing noise, therefore it is of
interest to calculate or at least roughly estimate it. Two approaches are presented, one based on
taylor series, the other one using an assumption of the switching action of the cross-coupled
pair within an oscillator.

Recall that for stable oscillation, the average introduced energy must match exactly the average
loss. In the case of the simple LC resonator with losses, they same can be achieved by matching
the average negative resistance of the cross-coupled pair to the loss resistor of the tank. For not-
too-large amplitudes, a taylor approximation can be made of the current-voltage characteristic
of the cross-coupled pair. This yields:

𝑖 ≈
𝐺3
𝑚

3𝐼 20
𝑣3 − 𝐺𝑚𝑣

For sinusoidal voltages at the inputs of the negative resistance, the produced current is

𝑖 =
𝐺3
𝑚

3𝐼 20
𝑣30 sin

3(𝜔0𝑡) − 𝐺𝑚𝑣0 sin(𝜔0𝑡)

The average transconductance ̅𝐺𝑚 can be calculated with the quotient of the average voltage
and current in one half of a cycle:

̅𝐺𝑚 =
̅𝑖
̅𝑣
=

2
𝑇 ∫

𝑇
2

0
𝑖 d𝑡

2
𝑇 ∫

𝑇
2

0
𝑣 d𝑡

=
∫

𝑇
2

0

𝐺3
𝑚

3𝐼 20
𝑣30 sin

3(𝜔0𝑡) − 𝐺𝑚𝑣0 sin(𝜔0𝑡) d𝑡

∫

𝑇
2

0
𝑣0 sin(𝜔0𝑡) d𝑡

̅𝐺𝑚 = 𝐺𝑚 ⋅ (2(
𝐺𝑚𝑣0
3𝐼0 )

2
− 1)
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3.5.3. Amplitude estimation of oscillators using the cross-coupled pair

In steady state, the average transconductance of the cross-coupled pair matches the loss of the
tank, modeled by the parallel resistor 𝑅𝑝.

̅𝐺𝑚 = −
1
𝑅𝑝

𝐺𝑚 ⋅ (2(
𝐺𝑚𝑣0
3𝐼0 )

2
− 1) = −

1
𝑅𝑝

⇔ 𝑣0 = 3
𝐼0

√2𝐺𝑚√
1 −

1
𝐺𝑚𝑅𝑝

The square-root term may not become negative, so the following condition must be met:

𝐺𝑚 > 𝑅𝑝

This is clear since 𝐺𝑚 models the steepness of the current-voltage characteristic of the cross-
coupled pair in the origin. If𝐺𝑚 is smaller than the steepness of the current-voltage characteristic
of the resistor, the losses can not be compensated for.

This result can be used to perform an estimation of the voltage amplitude of the oscillator.
Keep in mind the assumptions used up to here: The oscillator waveform (voltage) is sinusoidal,
the voltage-current characteristic of the cross-coupled pair can be modeled by an tangus
hyperbolicus, which, in turn, can be approximated by its third-order taylor series. The last point
is important, since this introduces great errors for large amplitudes of the oscillator waveform.

Figure 3.11 shows the transient response of the cross-coupled pair due to a sinusoidal waveform.
The left image displays the voltage, the right image the current at the terminals. For small
amplitudes the bevahiour is fairly linear, with increasing non-linearities with higher amplitudes.
Still, for medium amplitudes, the taylor approximation is sufficient. The validity deteriorates for
big values of 𝐺𝑚 and small values of 𝐼0. If 𝐺𝑚 is large, the slope at the origin is large, therefore
quickly showing saturation. This can be compensated by a large maximum current 𝐼0.

𝑡

𝑣 (𝑡)

𝑡

𝑖 (𝑡)

Figure 3.11. – Transient response of the cross-coupled pair excited by a sine wave

While the above analysis gives some insight, it is often not valid in oscillator design. This is
because of two distinct operation regions of oscillators, called the “current limited” and the
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3.6. Performance parameters of oscillators

“voltage limited” regimes (see for example [Lis+14]). To minimize oscillator phase noise, it
is preferable to operate in the voltage limited regime, which means that the cross-coupled
pair should exhibit hard switching. The individual transistors should be peridically switched
totally on and off, which causes the amplitude of the oscillator to reach a maximum. For the
voltage limited regime, there is a well-known calculation methodology, which uses frequency
analysis.

In the case of large amplitudes, it is assumed that the current at one terminal of the cross-coupled
pair shows a rectangular shape (the current at the other terminal shows the opposite, since the
sum of both currents is constant). The tank acts as filter, which, at resonance, can be modeled
as the parallel combination of an inductor, a capacitor and a resistor. The inductor and the
capacitor act as an open circuit for signals at the oscillation frequency, but as a small impedance
at other frequencies. Therefore, only the fundamental tone of the current in the oscillator flows
through the resistor, generating the oscillator voltage. Hence, only the fundamental tone is
responsible of the amplitude of the oscillator.

The current through the tank can be expressed by the following form:8

𝑖(𝑡) = 𝑖0
4
𝜋

𝑛=∞
∑
𝑛=1

sin((2𝑛 − 1)𝜔0𝑡)
2𝑛 − 1

As mentioned, only the fundamental tone builds the voltage signal, so the output voltage is of
the form:

𝑣out(𝑡) = 𝑖0𝑅𝑝
4
𝜋
sin(𝜔0𝑡)

⇔ 𝑣0 = 𝑖0𝑅𝑝
4
𝜋

3.6. Performance parameters of oscillators

So far the oscillator was introduced. It was determined, how it runs at a specific frequency, how
the oscillation is stabilized, including the inherently non-linear nature of oscillators. However,
what performance parameters are important for oscillators? What makes an oscillator a good
oscillator? In the following, some major parameters are introduced.

3.6.1. Frequency and tuning range

Frequency is on of the main parameter of oscillators, since they are designed to generate a
periodic waveform with a certain frequency. This frequency must be stable and exact, since
otherwise conversion errors are introduced within receivers and transmitters.

8This is a single-sided spectrum representation.
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The main use of oscillators in communication circuits is within frequency synthesizers. There-
fore, they must be tunable. The required tuning range depends mostly on the application and
which frequencies are to be synthesized. It is possible to include multiple wireless standards,
therefore requiring a higher tuning range. The frequency band can be preselected through
dividers, making it possible to design one oscillator for many bands, targeting at the highest
frequency. However, since designing high-frequency oscillators is harder, this may not always
be the right approach. Another important factor determining the tuning range are process
spread and modellation errors during design. The frequency of the oscillator will never be at
exact the value it was designed for, but this is necessary for correct down- and upconversion. A
phase-locked loop with the right locking range can compensate for this, all that is needed is a
stable and accurate reference oscillator. The tuning range must be large enough to ensure that
these compensation mechanism can be used properly.

3.6.2. Amplitude and signal power

The amplitude of an oscillator is of importance, since a large amplitude exhibits a better signal-
to-noise ratio. Often, the amplitude is limited by the power supply or the operating regions of
circuit components.

3.6.3. Waveform and purity

There are many different oscillator topologies, producing many different waveforms. There
are a handful of typical curves propably intuitively known to the reader, such as sine waves,
rectangular waves (also with duty cycle different from 50%), sawtooth waves and perhaps
triangle waves. Of course, these are always abstractions since their frequency contents will
deviate from the perfect distribution. The main question is: Does the waveform play an
important role for oscillators in communication circuits? The answer is mostly no. Usually, the
oscillator is used to drive a mixer (either for down- or upconversion), where abrupt switching
of waveforms is desirable, in terms of noise (see [Raz12]). This means that the waveform of the
oscillator itself shows a “switching characteristic” (similar to rectangular waves) or the local
oscillator interface of the mixer is of a hard-switching nature. In both cases, the waveform
should be stable in its frequency and phase, but the actual waveform is not of great importance.
This also holds in phase-locked loops, which can be built entirely digital (all-digital PLL; of
course the oscillator is still of analog nature). In this case, oscillators are followed by a buffer,
which converts their intrinsic waveform into a rectangular type.

Together with different waveforms the term purity is not far. It is often quantified by total
harmonic distortion (THD), which relates the power of harmonics to the power of the fundamental
tone. Since the type of waveform is not of great interest in communication circuits, the THD is
usually also not considered in design.
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3.7. Phase Noise

3.6.4. Noise

Do oscillators exhibit noise? Intuitively, the answer is yes. However, as will be shown further
on, noise in oscillators is a quite complex process and still subject to many research studies.
Noise in oscillators unfortunately can not be analyzed with the classical methods of linear
superposition and frequency domain calculations. However, not surprisingly, it still plays a
very important role in RF circuits and escpecially oscillators are a critical component for noise
performance. Oscillators show their noise mainly in so-called phase noise. Since there are many
aspects to this, the next section is dedicated to this.

3.7. Phase Noise

Phase noise is a phenomenon inherently present in every oscillator. Simply speaking, phase
noise relates to a momentary frequency shift of the frequency of periodic signals. It is a random
process, similar to voltage or current noise in an amplifier.

3.7.1. Phase noise in receivers and transmitters

Phase noise poses a problem in mixers. Here, a local oscillator is used as signal in order to
perform the conversion process. If this oscillator shows significant noise skirts, interferers
near the wanted signal can disturb the downconverted signal. While the interferer is actually
converted into a band outside of the IF band, the folded noise components of the oscillator leak
into the band of interest. This is especially severe since the interferer can bemuch larger in power,
for example a transmitter which is located close to the receiver. Figure 3.12 shows this situation.
Here, near to the wanted signal at 𝑓sig there is a large interferer at 𝑓int. Additionally, the local

𝑓LO 𝑓sig𝑓int

Interferer

Signal

𝑓

𝑃

𝑓IF
𝑓

𝑃

Downconversion

Figure 3.12. – Downconversion with noisy oscillators

oscillator signal located at 𝑓LO shows significant noise skirts. Since a frequency translation like
downconversion involves a convolution, the shape of the local oscillator also influences the
shape of the downconverted signals. A convolution of two spectra always broadens the resulting

32



3.7.2. Phase noise in oscillators

spectrum.9 This is shown in the right image of figure 3.12 which shows the downconverted
signals. The spectra of both the wanted signal and the interferer are broadened, which causes
some part of the downconverted interferer spectrum to “leak” into the band-of-interest. This
clearly corrupts the wanted signal, especially for interferer with high power.

Phase noise also poses a problem in transmitters. Here, a signal gets emitted, which is upcon-
verted by a local oscillator, therefore having similar noise properties as the oscillator. Now
consider a transmitter, which operates close to a receiver. If the received signal is in a channel
close (but different) to the transmission channel, the noise skirts from the transmitted signal can
leak into the reception channel, corrupting the possibly much smaller received signal. Note that
this takes place before filtering or downconversion so that there is no possibility to differentiate
between both signals. This is similar to the situation in the right image of figure 3.12, only that
the center frequencies of the two signals are the respective channels, which are close to each
other.

Together with wireless communication standards (such as GSM), this lays down strict require-
ments on the transceivers. For example, the phase noise of the local oscillator in a GSM-receiver
must be below −113 dBc/Hz at an offset of 600 kHz (this example is taken from Razavi’s book
on RF microelectronics, see [Raz12, page 548 – 550]). Communication standards impose restric-
tions on transmitters in form of transmission masks, which are sets of power levels in certain
frequency intervals, that are not to be exceeded.

3.7.2. Phase noise in oscillators

An ideal oscillator is a pure sinusoidal waveform 𝑢(𝑡) = 𝑎0 cos(𝜔0𝑡) with its spectrum (power
spectral density) consisting of two delta impulses at −𝜔0 and 𝜔0, respectively. This notion
of an ideal oscillator can be extended to a noise-free oscillator with harmonics10, where the
spectrum consists of delta impulses at integer multiples of the fundamental frequency. A typical
(one-sided) spectrum of an ideal noise-free oscillator with harmonics can be seen in the left
image of figure 3.13. As can be seen, the power of the individual impulses decreases with
increasing frequency with the fundamental having the greates power.

To retrieve the power of the oscillator, the power spectral density has to be integrated from −∞
to ∞, which is the same as the sum of the weights of the delta impulses. A real oscillator shows
a similar behaviour, but here the power is not concentrated in the delta impules but peaks with
finite width (see figure 3.13, right image). The spectrum shows some deviation (compared to the
ideal spectrum) in form of so called noise skirts. Noise signals in the oscillator circuit disturb the
phase of the signal and can be seen as momentary changes of the frequency of the oscillator,
therefore there exist signals with a frequency different from 𝜔0. However, their power is lower
than the “main” signal, so that the oscillator signal spends most the time at the center frequency.

9For real world signals. The convolution of a signal with a dirac impulse preserves the original spectrum.
10This depends on the application: As was shown, for typical RF applications, the waveform of the oscillator is not

of great importance.
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𝑆𝑣𝑣

Figure 3.13. – Spectra of ideal and real oscillators

It is important to note that the noise sources do not add power to the oscillator. The integrated
power spectral density of an ideal and a real oscillator yield the same result.11 Noise sources in
an oscillator lead to a broadening of the spectrum.

Now, why is phase noise called phase noise? What is the difference to amplitude noise? Consider
the equation 3.4. The ideal waveform (represented by the cosine) gets perturbed in its amplitude
and phase, respectively by 𝛼(𝑡) and 𝜙(𝑡).

𝑣(𝑡) = (𝑣0 + 𝛼(𝑡)) cos(𝜔0𝑡 + 𝜙(𝑡)) (3.4)

The non-linear nature of the oscillator (needed for a steady amplitude) inherently rejects
amplitude noise. Phase, on the other hand, has no restoring forces. There is no “reference
phase”, the phase is free-running. For this reason, any disturbance of the phase persists. This is
consequently to the differential equations describing the oscillator: any phase-shifted version
of a solution is a solution itself.

3.7.3. Effect of phase noise on long-term phase

In order to discuss the impact of disturbances within the oscillator on phase noise, first consider
the trajectory of an oscillator in state-space depicted in figure 3.14. Here, two state variables
𝑥 and 𝑦 are present, which could for instance be the current through and the voltage across
a capacitor. The dotted curve signifies the steady-state limit cycle of the oscillator. At some
time 𝑡0 the oscillator gets disturbed and the trajectory leaves the limit cycle. The amplitude
stabilization mechanism will reestablish the steady-state amplitude of the oscillator. The phase,
however, has no restoring forces, therefore a finite phase error 𝜃 remains indefinitely.

Now, consider an oscillator which is periodically disturbed by random values, which represent
noise. Since the phase errors persist in time, the phase can shift over time. This is shown
in figure 3.15 where the the effect of phase noise on the oscillator signal can be seen. Here,
the signal gets a “noisy” shape (visible through the non-smooth curve), but more importantly,
the zero crossings change significantly as compared to the ideal reference signal. This effect

11For the same oscillator with and without noise sources.
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𝜃 𝑥

𝑦

Figure 3.14. – A state-space trajectory of a free running oscillator disturbed by a single impulse

𝑡

𝑢(𝑡)

Figure 3.15. – Time-domain signals of real oscillators: Long-term effects of phase noise

increases in time, therefore also the variance of the zero crossings increases in time. If one waits
for an infinite amount of time, the phase of the oscillator cannot be predicted.

In the following phase noise and its origins will be described further, as well as methods for
calculation. For this, first an approach for measurements will be discussed, which also shows
the properties of phase noise.

3.7.4. Phase noise characterization and measurements

Phase noise of periodic signals is measured through the means of a spectrum analyzer. Here,
the power of the sidebands is measured in a bandwidth of 1Hz and compared to the overall
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power of the oscillator:

ℒ = 10 log
(
𝑃SB(𝜔0 + Δ𝜔)

𝑃osc )

The unit used is dBc, which stands for decibel referenced to the carrier, so 0 dBc is exactly the
power of the carrier. Therefore, the noise expressed in dBc will usually be negative.12

A spectrum analyzer filters the signal through a bandpass of a desired bandwidth and measures
the power of the remaining signal. This yields a power in a certain bandwidth. This procedure
is repeated across the whole band of interest with the power spectral density as result. Consider
the left image of figure 3.16, which shows the power spectral density of an oscillator with a
center frequency 𝜔0. Here, the power of the signal is filtered with a certain bandwidth at specific
offset frequencies, which is shown by the grey areas. The position of the areas is the offset
frequency, the width symbolyzes the bandwidth of the filter. Theoretically, the bandwidth of
the filter should be 1Hz, but this is hard to implement. Therefore, a higher bandwidth is used,
which must be compensated for.

The power in a certain frequency intervall can be expressed by

𝑃 =

𝑓2

∫
𝑓1

𝑆𝑣𝑣 (𝑓 ) d𝑓

where 𝑆𝑣𝑣 is the real power spectral density of the signal. One must be cautious when speaking
about measurements: Since it is hard to implement a measurement bandwith of 1Hz, the power
is measured in a larger bandwidth and must be normalized to a 1Hz-bandwidth. The real power
spectral density is assumed to be constant in a small frequency intervall, therefore:

𝑃(Δ𝑓 ) = (𝑓1 − 𝑓2) ⋅ 𝑆𝑣𝑣 (Δ𝑓 ) = 𝐵𝑊 ⋅ 𝑆𝑣𝑣 (Δ𝑓 )

ℒ =
𝑃(Δ𝑓 )
𝐵𝑊

⋅
1

𝑃total

The symbol ℒ is used in different ways by different authors. The straight-forwardmeasurement,
that was described above (filtering and measuring power) yields the combined power spectral
density of amplitude noise and phase noise. There are, however, also more sophisticated
measurement methods which are able to truly separate phase and amplitude noise. This is done
by quadrature mixing, which cancels out amplitude noise. Still, in many cases the symbol ℒ is
used only for phase noise.

The right image of figure 3.16 shows the resulting profile of the measured phase noise. Both

12Positive values are possible in theory, since this only means that the power of the oscillator in this bandwidth is
higher than than the total power. All measurements are referenced to a 1Hz-bandwidth, therefore the noise
bandwidth in this example must be smaller.
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𝜔0
𝜔

𝑃

∼ Δ𝜔−3

∼ Δ𝜔−2

Δ𝜔

ℒ

Figure 3.16. – Measurement of phase noise

axes are logarithmic axes13, so that there are regions where the plot shows linear behaviour.
Here, three main regions are visible: One constant region and two negative-slope regions with
different exponents.

The probably best-known equation describing the characteristica of phase noise in oscillators is
the so-called “Leeson-Cutler” model. It is based on empirical examinations of oscillators but
not theoretically founded. Still, it provides a description of actual phase noise profiles.

ℒ(Δ𝜔) = 10 log
(
2𝐹𝑘𝑇
𝑃tot

⋅ (1 + (
𝜔0

2𝑄Δ𝜔)
2

) ⋅ (1 +
𝜔1/𝑓

Δ𝜔 ))
(3.5)

In equation 3.5, the first fraction consists of the total power of the oscillator (𝑃tot) and the
device excess noise (𝐹), which is an empirical parameter ([Lee66]). Furthermore, two important
frequencies appear in the expression, the center frequency of the oscillator 𝜔0 and the corner
frequency of device flicker noise. Note that in this model it is assumend that the device flicker
noise corner frequency matches the corner frequency of the oscillator flicker noise, which is
not true in general (see [HL98]). Lastly, the quality factor of the oscillator influences only the
𝜔−2-region, not the region of flicker noise. For high frequencies, equation 3.5 reduces to

ℒ(Δ𝜔) = 10 log
(
2𝐹𝑘𝑇
𝑃tot )

and the phase noise becomes constant.

The Leeson-Cutler model gives straight-forward recommendations for reducing phase noise,
which all are quite intuitive: The total power should be maximized (phase noise is measured
with respect to the carrier, so a carrier with higher power shows less relative phase noise), the
device noise, both flicker and white, should be minimized. These recommendations are what
one would intuitively expect.

13The y-axis is measured in dBc/Hz, so the axis is actually linear, but it has the same effect.
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Figure 3.17 shows a simple model to explain the different regions of phase noise. The left
inverter, together with the resonator, builds a simple oscillator, the right inverter is the output
buffer. Both inverters are noisy and therefore contributing to phase noise.

Buffer

Oscillator

𝑣osc
𝑣 buf

𝑡

𝑣osc

𝑡

𝑣 buf

Figure 3.17. – Oscillator with output buffer generating different kinds of phase noise

First, consider only the oscillator. Around the signal edges the signal is small, so the noise of
the inverter (which acts as comparator) moves the edge forward or backward in time. This is
because its switching threshold is changed by the noise. Now the signal is phase-shifted by
the resonator and again fed to the inverter. If the inverter is suddenly noise-free, the phase
error introduced before is persistent. Any future phase error is added to the previous errors so
that the total error accumulates. This is the behaviour of an integrator, therefore the generated
phase noise shows the same frequency profile, which is ∝ 𝜔−2.

Now have a look at the buffer: Here, the noise of the inverter also changes the phase of signal
by moving the edge in time, but now it is driven by a signal, not free running. Since the buffer
has no influence on its input signal, phase errors can not accumulate as in the oscillator. Any
change is momentary and not correlated to previous values. This is the definition of white noise,
so that the phase noise generated by the buffer has a flat spectrum.

This explains the flat and the negative-slope regions of the phase noise profile, but does not
consider flicker noise. Intuitively, if the inverters have flicker noise, this will show itself also in
the phase noise profile, therefore creating a 𝜔−3. But how is the flicker noise corner frequency
constituted? As was already mentioned, it does not generally match the device flicker noise
corner frequency. Apparently, there is more to the picture, which will be investigated in the
following section.

3.7.5. Relation to jitter

There is another measure of phase instability, which is called jitter. It describes the deviation of
the timing of edges in signals. A perfect square wave, for example, will have its edges always
at the same times (shifted by the period of the signal, of course). If the period and the time of
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3.7.5. Relation to jitter

an edge is known, all previous and next edges can be predicted. With jitter, the timing varies
around the ideal value. This can be expressed by shifting a periodic signal in time by a random
process ([Kun12]):

𝑦𝑁(𝑡) = 𝑦(𝑡 + 𝑡𝑗(𝑡))

Here, 𝑡𝑗(𝑡) is a random process with a zero mean. This can be transformed into a phase noise
description using the period of the signal:

𝑦𝑁(𝑡) = 𝑦(𝑡 +
𝜙(𝑡)𝑇0
2𝜋 )

Since jitter describes timing instabilities of signal edges and phase noise phase errors of the signal
the question arises how the two are related. Seemingly, they describe the same phenomena,
which in fact is true. Both are different perspectives on phase instabilities. Jitter is the time-
domain representation of the frequency-domain phase noise.

How is jitter measured? First, one has to define exactly what jitter describes. Since jitter is about
timings of edges or zero crossings, there must be a reference. Here, the following measures are
considered: Absolute jitter, which is the time difference of the ideal time of the edge and its
actual occurence. This is referred to an arbitrary start edge. Absolute jitter (sometimes also
called long-term jitter) free-running systems increases indefinitly in time and is therefore not
a useful measure. For driven system with a perfect periodic input (for example the buffer in
figure 3.17) on the other hand, absolute jitter does not increase, however, this configuration is
hardly realistic.

Different authors use different definitions of absolute jitter: See for example the article of Rick
Poore [Poo01], where absolute jitter is defined as the sum of the variation in the length of periods
(equation 3.7). Kundert, on the other hand, uses a similar measure but calls it k-cycle-jitter.
Here, the timings of two edges seperated by 𝑘 cycles are compared and the standard deviation
is calculated (equation 3.6).

𝐽𝑘(𝑛) = √var(𝑡𝑛+𝑘 − 𝑡𝑛) (Kundert) (3.6)

𝜎abs(𝑁 ) =
𝑁
∑
𝑛=1

(𝑇𝑛 − 𝑇avg) (Poore) (3.7)

Here, 𝑁 denotes the 𝑁th edge, 𝑇𝑛 is the 𝑛th period (as time) and 𝑇avg is the average period.

A more useful measure for non-driven systems is cycle-to-cycle-jitter. Here, the length of the
current period is compared to the length of the previous period. Since it is always referenced to
the same edge (relative), cycle-to-cycle jitter does not increase in time.

𝐽cc(𝑁 ) = √var(𝑇𝑁+1 − 𝑇𝑁)
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Figure 3.18 shows the described jitter characterizations. The dashed line indicates the ideal,

𝑇𝑖 𝑇𝑖+1

Cycle-to-cycle jitter

Absolute jitter

𝑡

𝑣osc

Figure 3.18. – Different characterizations of jitter

noise-free signal, the solid line shows the signal corrupted by noise. The length of the periods
are measured from edge to edge (rising or falling), the absolute jitter is the deviation from the
theoretical time.

How is phase noise related to jitter? As alreadymentioned, both describe the same phenomenom,
so one must be able to be calculated from the other. Kundert calculates this relation and it is
given here without proof (see [Kun12, section 10.1]):

𝐽 = √𝑐𝑇0 =
√

2𝜋𝑐
𝜔0

with

𝑐 = ℒ(Δ𝜔)
Δ𝜔2

𝜔2
0

Here, 𝐽 denotes the period jitter, which is 𝐽cc(1). It stands for the standard deviation of the length
of one period.

3.7.6. The impulse sensitivity function

A method providing great insight into the mechanisms of frequency folding of phase noise
is proposed by Hajimiri et al. ([HL98]). They introduce a function called impulse sensitivity
function (ISF), which is denoted by the symbol Γ. This function is a measure of how much
the phase of the oscillator is disturbed depending on the injection time of noise/unwanted14
signals.

14The ISF is used for noise calculations, but not limited to it.
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𝐶 𝐿𝑖0𝛿(𝑡 − 𝑡0)
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𝑣out

𝑡
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Figure 3.19. – Injection of charge in an ideal oscillater

Imagine a current impulse, that injects an amount of charge at some specific time into the
oscillator15 of figure 3.19. The current is absorbed entirely by the capacitor, since the inductor
presents a high impedance to fast signals (this can be shown). If the impulse occurs at the peaks
of the waveform, it changes the amplitude, but not the phase of the oscillator signal (middle
image of figure 3.19). The opposite happens if the impulse occurs at the zero crossing of the
waveform. Here, the phase changes (right image of figure 3.19).16

The produced phase change due to the current impulse persists, which implies that the impulse
response of excess phase is a step function. This matches the discussion on phase noise profiles
in oscillators above, where a integrator-like behaviour was shown. The integral of an impulse is
a step. The height of the step varyies with the time of injection of the impulse, it is therefore
time-variant. This time-variance is not arbitrary but periodic. It does not matter at which cycle
the impulse is injected. The time relative to this period is important, not its absolute time.
Therefore, the variation of the height of the impulse response of the oscillator has the same
periodicity as the oscillator waveform. For this, the impulse response can be described as (with
𝜎(𝑡) being the step function)

ℎ(𝑡, 𝑡0) = 𝑘 ⋅ Γ(𝜔0𝑡0)𝜎(𝑡 − 𝑡0)

Here, Γ denotes the periodic variation of the height of the impulse response with the time of
injection 𝑡0. Is called the impulse sensitivity function (ISF) and is a measure for the amount of
phase change through injection in dependence of time. What is the meaning of 𝑘? For this, the
linearity of the system needs to be evaluated.

Until now, it was assumed that the height of the impulse response varies with time, but does
depend on the amount of injection. This is the linearity property for systems. Is this system
linear? Hajimir et al. check for this empirically: They use two different oscillators (LC colpitts

15 Recall the above discussion on what is to be called an oscillator. This “oscillator” has no amplitude-restoring
mechanisms, which disqualify it of its name. Since the poles are always located on the imaginary axis, there
occur no damping actions for amplitudes that exceed the “stable” amplitude.

16To be precise: the opposite would mean that there are only changes in phase, not in amplitude. This is not true,
although it is often portrayed like that in literature, even in the original paper. For simple cases like the presented
one, the problem can be analyzed by solving the differential equation, which shows that there is an amplitude
change occuring at injection at the zero crossings. There is, however, a point where no amplitude change occurs,
but this is not relevant for this discussion. See appendix A.2.3 for a calculation of this point.
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and a ring oscillator) and inject charge at some nodes. For small amounts of charge the oscillators
can empirically shown to be linear systems (regarding these nodes as input and the phase change
as output). See [HL98, section III and figures 5 and 6]. This leads to the proportionality factor 𝑘
in the above equation being expressed through the maximum stored charge at the respective
node 𝑞max.

ℎ(𝑡, 𝑡0) =
Γ(𝜔0𝑡0)
𝑞max

𝜎(𝑡 − 𝑡0)

In order to arrive at the excess phase Δ𝜙 for a given injection signal, the convolution integral
𝑖(𝑡) for time-variant systems need to be solved:

Δ𝜙(𝑡) =

∞

∫
−∞

ℎ(𝑡, 𝜏 )𝑖(𝜏 ) d𝜏

=
1

𝑞max

𝑡

∫
−∞

Γ(𝜔0𝜏 )𝑖(𝜏 ) d𝜏

Since the impulse sensitivity function is dimensionless, the whole expression will be dimen-
sionless as well, since the integral of a current is charge, which gets divided by the maximum
stored charge. This also motivates the choice of the proportionality constant in the impulse
response.

Now the excess phase is known and can be calculated for some special signals: For this, signals
that are periodic and have a frequency that is a integer multiple of the oscillator frequency will
be considered. For this discussion, the periodic nature of the ISF is used to express it as a fourier
series (the general form of a fourier series is a bit more complex, it contains for example a phase
shift for every signal. However, this discussion is qualitive and therefore these details are not
important):

Γ(𝜔0𝑡0) =
∞
∑
𝑛=0

𝑐𝑛 cos(𝑛𝜔0𝑡0)

This function is now inserted into the convolution integral in order to calculate the phase
shift:

Δ𝜙(𝑡) =
1

𝑞max

𝑡

∫
∞

𝑖(𝜏 )
∞
∑
𝑛=0

𝑐𝑛 cos(
2𝜋𝑛𝜙
𝑃 ) d𝜏 =

1
𝑞max

∞
∑
𝑛=0

𝑐𝑛

𝑡

∫
∞

𝑖(𝜏 ) cos(
2𝜋𝑛𝜙
𝑃 ) d𝜏

The described injection signals have the following form:

𝑖inj,n(𝑡) = 𝐼𝑛 cos(𝑛𝜔0 + Δ𝜔)

For this discussion, they have not exactly the same frequency as the oscillator waveform (or
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3.7.6. The impulse sensitivity function

a integer multiple, including 0) but deviate by a small frequency Δ𝜔. This frequency is much
smaller than 𝜔0.

The multiplication of the injection signal with the components of the ISF yields several fre-
quencies with the sum or the diffference of the individual frequencies. Only the component
“matching” the frequency of the injection signal will generate a signal which is near DC (only Δ𝜔
left). Hajimir et al. argue that, due to the averaging nature of the integral, all other components
are negligible, with only the slow, near-DC signal remaining. This is not a rigorous approach and
needs further evaluation. However, it does provide some inside and the resulting analyzation
seem to are valid. Using this approach, the excess phase due to a periodic injection signal at the
frequency 𝑛𝜔0 + Δ𝜔 is calculated to

Δ𝜙(𝑡) ≈
𝐼𝑛𝑐𝑛 sin(Δ𝜔𝑡)
2𝑞maxΔ𝜔

Interestingly, all injection signals generate a excess phase, which is slowly varying with Δ𝜔,
but no higher frequency components. Therefore, all injection signals get folded to the same
frequency region.

Now that the excess phase is known, the influence on the oscillator can be determined. For
this, the output voltage of the oscillator is of interest. The power spectral density 𝑆 can then be
calculated. Since the oscillator output voltage is of the form

𝑣out(𝑡) = 𝑣0 cos(𝜔0𝑡 + 𝜙(𝑡))

the excess phase due to current injection amounts to a phase modulation. Since noise usually
is small, the narrow bandwidth approximation can be used and the spectrum exhibits two
sidebands left and right to the carrier with a frequency of 𝜔0 ± Δ𝜔. Hajimiri et al. calculate the
single-sided power spectral density to ([HL98, page 183, equation (18)]):

𝑃SBC(Δ𝜔) = 10 log(
𝐼𝑛𝑐𝑛

4𝑞maxΔ𝜔)

The above discussion shows how injection signals far from the carrier (at 𝑛𝜔0 + Δ𝜔, with 𝑛 ≠ 0)
create phase noise near the carrier (at an offset frequency Δ𝜔). This also explains the occurence
of device flicker noise in phase noise: The respective noise gets upconverted to the carrier
frequency, where it adds to the noise skirts.

Figure 3.20 shows this process: The left image shows the power spectral density of a noise
source, where a constant (white) and a flicker noise region can be seen. The noise at integer
multiples of the oscillator frequency gets up- and downconverted (upconversion for components
with 𝜔 < 𝜔0, downconversion for 𝜔 > 𝜔0), so that it now lies around the fundamental tone of
the oscillator (which also happens at the harmonics). The low frequency (in this case flicker)
noise gets weighted by the DC value of the ISF, 𝑐0. Noise around the carrier gets weighted by 𝑐1
and so on. Since the ISF has (usually, this can differ) the same period as the oscillator waveform,
𝑐1 is of the largest value. Therefore, noise in the vicinity of the carrier frequency has the biggest
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3.7. Phase Noise

influence on oscillator phase noise (but the sum of all other components could outweigh this).

0𝜔0 1𝜔0 2𝜔0 3𝜔0 4𝜔0

𝑐0

𝑐1 𝑐2 𝑐3 𝑐4

𝜔

𝑆𝑣𝑣

0
Δ𝜔

𝑃

Figure 3.20. – Noise frequency translations, weighted by fourier coefficients of the ISF

Since device flicker noise (with a corner frequency of 𝑓𝑐) gets weighted by the DC value of the
ISF (𝑐0), it can become very small and insignificant for phase noise for symmetrical ISFs. This
also changes the flicker noise corner frequency in phase noise. Here, only the result of the
investigation made by Hajimiri et al. is given. See [HL98, page 185] for details.

𝑓1/𝑓 3 = 𝑓𝑐
𝑐20

2Γ2rms
≈ 𝑓𝑐(

𝑐0
𝑐1)

2

The corner frequency changed by the quotient of the DC value and the RMS value of the ISF.
Since usually 𝑐1 has the biggest influence on the RMS value, an approximation can be used.

Interestingly, in some oscillators flicker noise is of no importance. If the ISF is perfectly
symmetric, 𝑐0 becomes zero, which shifts the corner frequency of the 1/𝑓 3-region of phase noise
to zero, therefore suppressing flicker noise. The symmetry of the ISF is highly dependent on the
oscillator waveform and its non-linearities.

While the impulse sensitivity function theory delivers a nice approach in explaining the conver-
sion mechanisms for noise into phase noise, it is unfortunately unhandy and hard to calculate.
Hajimir et al. propose techniques for computation, but this almost always involves a simulator,
so that the question arises whether or not the phase noise should be simulated directly. There
are some publications on finding methods for simpler computation of the ISF, such as a paper
by Levantino et al. ([Lev+12]).

For the simple LC tank, the answer to a current impulse injected at an arbitrary time can be
calculated analytically. The result is presented here for completeness, see appendix A.2 for a
detailed derivation. Equation 3.8 shows the result.

𝑣 = 𝑣0 cos(𝜔0𝑡) + 𝜎(𝑡 − 𝑡0) ⋅ Δ𝑣 cos(𝜔0(𝑡 − 𝑡0)) (3.8)

This result can be used to calculate the impulse sensitivity function, which, even in this simple
case, is tedious.
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3.7.7. Amplitude noise

3.7.7. Amplitude noise

Up to here, only phase noise was considered. The question of what amplitude noise is and if
it exists may arise. In fact, amplitude noise is present in oscillators, but often not considered.
This is because of the amplitude restoring mechanism in an oscillator. However, since this
mechanism is of negative-feedback type, it also exhibits a certain bandwidth. For perturbations
larger in frequency, the restoring forces have no control any more, so that the disturbance
persists. This is true for large offset frequencies

3.8. Oscillator Topologies

In this section, a short overview of the most important oscillator topologies will be given. This
is as introduction for the reader, what typical oscillator structures exist and what their main
characterstics are.

3.8.1. LC Oscillators

LC oscillators play an important rule in modern RF electronics. Their sinusoidal waveform
and, foremost, their excellent phase noise performance set them apart from other oscillators.
LC oscillators are very well analyzed and subject to much research and many improvements.

𝐿

𝐶

𝑉DD

𝑀1 𝑀2

𝑡

𝑣out

Figure 3.21. – The classical LC oscillator used in RF circuits

Typical variations include a current source at the bottom or the top, a pmos-implementation
or a complementary implementation (using cross-coupled pairs made from nmos- as well as
pmos-transistors). They can be built in any standard technology with the inductor made of
special arrangements of the metal wiring. For tuning most implementations used either variable
capacitors (varactors) or capacitor arrays with switches. LC oscillators offer a sine wave of
high purity, but this is often not important, since usually a digital buffer directly follows the
oscillator.
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3.8. Oscillator Topologies

3.8.2. Ring Oscillators

Ring oscillators are often used as clock generators. They achieve considerable low phase noise
but need a lot of power. They are made of a chain of inverters, which drive each other. Because
of the delay introduced by the single stages, this chain can oscillate. Figure 3.22 shows a block
diagram (left image) and corresponding waveforms (right image). The different line types of
the curves denote the outputs of the individual inverters. These curves show “digital” curves,
where also, depending on frequency, also more “analog” waveforms are possible. How many

Inverter

Inverter

Inverter

𝑡

𝑣out

Figure 3.22. – Structure of a ringoscillator

inverters are needed in order to build an oscillator? For this, single-pole inverters are assumed,
providing a maximum phase shift of of 90°. An odd number of inverters (say: three) produce
on total one inversion (the others cancel out each other), therefore adding another 180° phase
shift. That means a three-inverter chain can oscillate, where each stage adds a phase shift of 60°.
This implies that two inverters are enough for stable oscillations (phase shift of 360°), but recall
that the maximum phase shift of 90° per inverter is only reached for 𝜔 → ∞, where only a gain
smaller than 1 is provided. This violates the barkhausen criteria, so that two one-pole systems
can not oscillate.

3.8.3. Relaxation Oscillators

A relaxation oscillator is a two-phase oscillator, where some kind of energy storage gets filled
until it reaches a threshold. After this, the stored energy quickly gets released and the oscillator
returns to its uncharged state (or a state of opposite charge). Now the storing process stars
again, and so on. Usually, this energy storage is a capacitor, which gets charged by a constant
current.

Figure 3.23 shows the system structure and a typical waveform of a relaxation oscillator. In
this “implementation”, the charge time is much bigger than the discharge time, which leads to
an assymetric waveform. There are many different implementations of relaxation oscillators,
where this behaviour is different. For example, the output of the comparator is a rectangular
waveform, its duty cycle depends on the relation of the rise and the fall time of the oscillator
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3.8.4. Quartz Oscillators

signal. This property can be used to adjust the duty cycle to the application, even make it
controllable.

Charge/Discharge

Energy storage

Schmitt Trigger

𝑡

𝑣out

Figure 3.23. – Structure of a relaxation oscillator

There are many different implementations of relaxation oscillators, both in discrete and inte-
grated electronics. They can be built by incorporating full operational amplifiers and compara-
tors or simply by using current sources and capacitors as integrators and cross-coupled pairs as
comparators (a circuit very similar-looking to the circuit in figure 3.21). Relaxation oscillators
are maybe the most sold oscillators of all time, in form of the well-known 555 timer IC.

3.8.4. Quartz Oscillators

Quartz oscillators cannot be fully implemented on-chip, due to the needed quartz crystal, which
is very big. They do, however play an important role as reference oscillators for phase-locked-
loops, since their phase noise performance is unmet by other oscillator types.

A quartz oscillator uses a mechanical resonating crystal made of piezoelectrical materials. The
oscillator can be built with few parts, consisting of an fed-back inverter and capacitances for
tuning. The crystal also allows operation at higher frequencies using resonance at higher
harmonics. To acchieve this, the unwanted harmonics must be made unstable (stable in a
oscillatory sense, where “unstable” means damped). The usual frequency ranges of quartz
crystals are of the order kHz to hundreds of MHz.

3.8.5. Other Topologies

There are many other topologies, many of them exploiting special techniques and phenomena
like stripline resonantors or surface acoustic wave (SAW) oscillators. However, they usually
need special technologies and therefore can’t be realized in standard CMOS. Because of this,
these kind of topologies will not be further investigated in this work.
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3.9. Figure of merits

In order to compare different oscillators, a “fair” measure is needed. For this, a so called figure
of merit (FoM) is used. Unfortunately, there are varying definitions of this FoM. The most
basic variant solely compares phase noise performance at a certain offset frequency and the
power consumption. Also included in the definition is the oscillator center frequency, which
compensates for harder-to-reach phase noise in high frequency oscillators:

FoM = ℒ(Δ𝜔) − 20 log(
𝜔0
Δ𝜔)

+ 10 log(
𝑃tot
1mW) (dBc/Hz)

The first part is the measured phase noise at a certain offset frequency, the second part is
a consequence of Leeson’s equation in the 𝜔−2 region. There, an increase in oscillation fre-
quency increases phase noise. In order to compare low- with high-frequency oscillators, this
phenomenom is compensated. The third part introduces the power of the oscillator, the less the
better. In total, this leads to a FoM where smaller values are better.17

In general, having a higher tuning range in a VCO increases phase noise (see [SOM11]), so the
tuning range often is integrated into the figure of merit to have a fair comparison of oscillators
with highly different tuning ranges (𝑇𝑅):

FoM𝑇 = ℒ(Δ𝜔) − 20 log(
𝜔0
Δ𝜔

⋅
𝑇𝑅
10 )

+ 10 log(
𝑃tot
1mW) (dBc/Hz)

where the tuning range is defined by ([Ito+06])

𝑇𝑅 =
𝑓max − 𝑓min

𝑓0

The motivation for the factor of 0.1 in the definition of the above figure of merit is unclear. It is
presented and used like this in publications. Obviously, it is used as a scaling factor. Here, this
factor will be omitted.

When comparing oscillators onemust be cautious: The shown figures of merit do not compensate
all effects, which means that, most propably, there will be a best and a worst case FoM for any
oscillator. Not always is the worst case used for calculations, which has to be considered.

17There are definitions where all signs are inverted to get a positive, higher-is-better FoM. However, most of the
publications seem to use the here presented definition.
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Chapter 4.

Active inductors

Since passive inductors can be implemented in standard CMOS, the cross-coupled LC oscillator
is the preferred on-chip oscillator for many applications. It provides an excellent phase noise
performance as well as low harmonic distortion and low power consumption. As was shown in
the introduction, the passive inductors, however, occupy a lot of space. In a typical oscillator,
the inductor can easily make up for half the space, having in total some area consumption of
300 μm×300 μm. Therefore it would be interesting to investigate some alternatives to oscillators
without passive inductors. For this, active implementations of passive inductors are presented
in this chapter, after a short introduction to passive on-chip inductors.

4.1. Passive Inductors

In this section a short overview of the most important properties of passive inductors, especially
on-chip inductors, will be given.

4.1.1. On-chip inductor shapes

A passive on-chip inductor usually consists of metal lines shaped in a manner that enhance
the parasitic inductance of the interconnections by coupling magnetic fields from one line to
another. For this, inductors are made of wires running close to each other.

Lumped inductors can be implemented on-chip, preferable by means of spiral inductors. In-
ductances in around 1 nH can be built reasonable. The major disadvantage of this approach
is the occupied space: an oscillator using a passive inductor can easily need 0.5mm2, with
the inductor occupying one third of the total area. Figure 4.1 shows a die photograph of a LC
oscillator with a center frequency around 50GHz. Inductors tend to be built smaller for larger
frequencies, as can be seen here. The diameter of the coil only is 44 μm, but it is still clearly
visible on the photograph and much bigger than the rest of the oscillator

Another problem of passive on-chip inductors is that they are susceptible to electromagnetic
fields. Phenomena like injection lock, which cause oscillators to shift in frequency due to

49
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Figure 4.1. – A schematic view of a typical chip layout with an on-chip LC oscillator [Tie06]

another periodic signal can occur because of the coupling of fields into the oscillator through
the inductor. This is a major problem and devices need to be shielded appropriately.

On-chip inductors can be built in differential configuration, which has two advantages: First,
electromagnetic forces common to both sides of the inductor cancel out. Second, the inductance
increases. On the other hand, of course the area increases as well. Therefore, the choice of the
configuration depends on the application.

4.1.2. Parasitic elements and small signal model

A passive on-chip inductor shows many parasitic effects, not only due to parasitic capacitances
and resistances. Also, as was already mentioned, electromagnetic coupling can occur, not only
externally but also on-chip. This disturbs neighboring conductors as well as it can create eddy
currents in the chip substrate (see [Tie06, page 42 – 44]).

Figure 4.2 shows an equivalent circuit of an on-chip inductor. Here, the non-idealities (parasitics)
are modeled as three lumped devices: a parallel and a series resistance and a parallel capacitance.
For large frequencies, the impedance is dominated by 𝐶𝑝, since its impedance is small. Therefore,
the inductor shows capacitive behavior for fast signals. Furthermore, for very low frequencies,
the ohmic losses dominate the overall performance. In these regions, the inductor shows resistive
behavior, which in turn is dominated by either 𝑅𝑠 or 𝑅𝑝. For a set of distinct frequencies, the
inductor shows the expected inductive behavior with the magnitude of impedance increasing
with frequency and a phase shift of (ideally) 90°.
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𝐿

𝑅𝑠

𝐶𝑝𝑅𝑝

+

−
𝜔

|𝑍 |

𝜔

𝜙

Figure 4.2. – Equivalent circuit model of an on-chip inductor

The overall impedance of the inductor is

𝑌 (𝜔) =
1
𝑅𝑝

+ 𝑠𝐶𝑝 +
1

𝑅𝑠 + 𝑠𝐿

⇔ 𝑍(𝜔) =
1

1
𝑅𝑝

+ 𝑠𝐶𝑝 +
1

𝑅𝑠+𝑠𝐿

=
𝑅𝑝 ⋅ (𝑅𝑠 + 𝑠𝐿)

𝑅𝑝 + 𝑅𝑠 + 𝑠 ((𝑅𝑝 + 𝑅𝑠)𝐶𝑝 + 𝐿) + 𝑠2𝐶𝑝𝐿

Since the inductor shows both an inductive and a capacitive region (neglecting the resistive
region), a self-resonance frequency, similar as in a conventional LC-tank is to be expected.
However, in practical applications the self-resonance frequency is not of great interest, since it
is usually much higher than the desired operating frequency of the inductor.

The above model can also be used for resonators consisting of an inductor and a capacitor,
where the capacitor is a lumped device, not a parasitic. A series resistor for the capacitor could
also be included, but the series loss of the inductor is usually more significant. The resonance
frequency of the resonator occurs at the maximum of the magnitude of its impedance. For
convenience, the squared magnitude is used for calculation:

𝑍(𝑠) =
1

1
𝑅𝑝

+ 1
𝑅𝑠+𝑠𝐿

+ 𝑠𝐶
=

𝑅𝑝𝑅𝑠 + 𝑠𝑅𝑝𝐿
𝑅𝑝 + 𝑅𝑠 + 𝑠(𝐿 + 𝑅𝑝𝑅𝑠𝐶) + 𝑠2𝐶𝑅𝑝𝐿

||𝑍 (𝑗𝜔)||
2
=

(𝑅𝑝𝑅𝑠)2 + (𝜔𝑅𝑝𝐿)2

(𝑅𝑝 + 𝑅𝑠 − 𝜔2𝑅𝑝𝐶𝐿)2 + (𝜔(𝐿 + 𝑅𝑝𝑅𝑠𝐶))
2
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𝜕
𝜕𝜔

||𝑍 (𝑗𝜔)||
2 != 0

⇔ 0 = 2𝜔𝑅2𝑝𝐿2 ⋅ (𝑅
2
𝑝(1 +

𝑅𝑠
𝑅𝑝

− 𝜔2𝐶𝐿)2 + 𝜔2(𝐿 + 𝑅𝑝𝑅𝑠𝐶)2)

− (𝜔
2𝑅2𝑝𝐿2 + 𝑅2𝑝𝑅2𝑠) ⋅ (−4𝜔𝐿𝐶𝑅

2
𝑝(1 +

𝑅𝑠
𝑅𝑝

− 𝜔2𝐶𝐿) + 2𝜔(𝐿 + 𝑅𝑝𝑅𝑠𝐶)2)

⇔ 0 = 2𝜔𝑅2𝑝𝐿2 ⋅ (𝑅
2
𝑝(1 +

𝑅𝑠
𝑅𝑝

− 𝜔2𝐶𝐿)2) − 𝜔2𝑅2𝑝𝐿2 ⋅ (−4𝜔𝐿𝐶𝑅
2
𝑝(1 +

𝑅𝑠
𝑅𝑝

− 𝜔2𝐶𝐿))

− 𝑅2𝑝𝑅2𝑠 ⋅ (−4𝜔𝐿𝐶𝑅
2
𝑝(1 +

𝑅𝑠
𝑅𝑝

− 𝜔2𝐶𝐿) + 2𝜔(𝐿 + 𝑅𝑝𝑅𝑠𝐶)2)

⇔ 0 = (1 +
𝑅𝑠
𝑅𝑝

− 𝜔2𝐿𝐶)(1 +
𝑅𝑠
𝑅𝑝

+ 𝜔2𝐿𝐶) + 𝑅2𝑠(2
𝐶
𝐿
(1 − 𝜔2𝐿𝐶) −

1
𝑅2𝑝

− 𝑅2𝑠
𝐶2

𝐿2 )

The resonance frequency can be calculated as

𝜔0 =

√√√√√√√
√
√
1 + 2𝑅𝑠(

𝐶
𝐿
𝑅𝑠 +

1
𝑅𝑝)

− 𝑅2𝑠
𝐶
𝐿

𝐿𝐶
≈
√

1 + 𝑅𝑠(
𝐶
𝐿
𝑅𝑠 +

1
𝑅𝑝)

− 𝑅2𝑠
𝐶
𝐿

𝐿𝐶
=
√

1 + 𝑅𝑠
𝑅𝑝

𝐿𝐶

The last expression incorporates all devices of the small signal model and is quite accurate.
However, usually 𝑅𝑠 is much smaller than 𝑅𝑝, therefore the quotient of the two is much smaller
than 1. With this, the resonance frequency reduces to the well-known form:

𝜔0 =
1

√𝐿𝐶

4.1.3. Noise

The total noise of the inductor (in this model) is contributed by 𝑅𝑝 and 𝑅𝑠. Here it is assumed
that both resistors contribute only white noise with a power spectral density of

𝑖2𝑁 = 4𝑘𝑇𝑅

Note that this is the one-sided power spectral density for frequencies above 0, so a factor of 4
instead of 2 is used.

4.1.4. Quality factor

Since inductors are used for oscillator design, their quality factor is of interest. The quality
factor 𝑄 is a measure for how good the device shows the desired behavior. For an inductor
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with a series or parallel resistance (neglecting other parasitic effects), the quality factor can be
expressed as

𝑄 =
𝜔𝐿
𝑅𝑠

(series)

𝑄 =
𝑅𝑝
𝜔𝐿

(parallel)

For a given inductance and frequency, the series resistor should be minimized while the parallel
resistor should be maximized, which is intuitively understood.

Typical on-chip inductors reach quality factors of a few tenths, for example 30.

Together with the parallel capacitor, the resonator has a total quality factor, which can be
calculated from the individual quality factors of its devices:

1
𝑄tot

=
1
𝑄𝐿

+
1
𝑄𝐶

Since the quality factor of on-chip capacitors can easily reach values above hundred, the
resonator 𝑄 is usually dominated by the 𝑄 of the inductor. There are techniques for raising the
quality factor of on-chip inductors, however, there are no significant improvements. In order to
come near the capacitor quality, another approach has to be taken. This can be made in form of
active inductors, which can be built by using a device called gyrator.

4.2. The gyrator

A gyrator is an ideal two-port network building block which can be used – besides others – to
build virtual inductances. It was proposed 1948 by Tellegen [Tel48] as addition to the existing
linear circuit elements (resistor, capacitor, inductor and transformer). The gyrator forms the
counterpart to the transformer in a sense that it cross-couples voltage from one port to current
on the other port. The ideal transformer couples voltage to voltage and current to current.

𝐺𝑖1 𝑖2

𝑣1 𝑣2 𝐺⋅𝑣2 𝐺⋅𝑣1

𝑖1 𝑖2

𝑣1 𝑣2

Figure 4.3. – Symbolic representation of a gyrator and its circuit equivalent
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The ideal gyrator is described by its voltage-to-current transfer functions:

(
𝑖1
𝑖2)

= (
0 𝐺
−𝐺 0) ⋅ (

𝑣1
𝑣2)

= (
𝐺 ⋅ 𝑣2

−𝐺 ⋅ 𝑣1)

With this, the gyrator can be represented by the circuit in the right image in figure 4.3, with its
symbol shown in the left image.

The cross-coupling action of a gyrator leads to an inversion of the voltage-current characteristic
of an electrical device. Consider the circuits in figure 4.4. Here, a generic impedance 𝑍 is
attached to the gyrator. Note that both circuits are equivalent, the input of the gyrator can be
any of the two ports.

𝐺𝑖1 𝑖2

𝑣1 𝑣2 𝑍
Input

𝐺𝑖1 𝑖2

𝑣1 𝑣2𝑍
Input

Figure 4.4. – Gyrator attached with generic impedance 𝑍

The calculation of the equivalent input impedance of the gyrator yields1:

𝑖𝑖𝑛 = 𝑖1 = 𝐺 ⋅ 𝑣2
𝑣2 = −𝑍 ⋅ 𝑖2 = −𝑍 ⋅ (−𝐺) ⋅ 𝑣1

𝑖𝑖𝑛 = 𝑖2 = −𝐺 ⋅ 𝑣1
𝑣1 = −𝑍 ⋅ 𝑖1 = −𝑍 ⋅ 𝐺 ⋅ 𝑣2

⇔ 𝑖𝑖𝑛 = 𝐺2 ⋅ 𝑍 ⋅ 𝑣𝑖𝑛

⇔ 𝑍𝑖𝑛 =
𝑣𝑖𝑛
𝑖𝑖𝑛

=
1

𝐺2 ⋅ 𝑍

If 𝑍 is replaced by a capacitor with the impedance (𝑠𝐶)−1, the input impedance of the gyrator
becomes

𝑍𝑖𝑛 =
𝑠𝐶
𝐺2

which shows inductive behavior:

𝑍𝑖𝑛 = 𝑠𝐿𝑒𝑞

with 𝐿𝑒𝑞 =
𝐶
𝐺2

1Note that both cases show the same result.
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4.2.1. Small signal behavior

In order to build a gyrator, the above circuit is restructured and the controlled current sources
are replaced by ideal transconductance amplifiers. Figure 4.5 shows the restructured circuit
on the left, the replacement circuit on the right. Here, two OTAs are used in a back-to-back

𝐺⋅𝑣1𝐺⋅𝑣2 𝑣1𝑣2

𝑣in

+

−+

−

𝑣in

Figure 4.5. – Gyrator circuit redrawn

configuration (note the sign inversion in one of the OTAs). Again, the choice where the
input lies is arbitrary. The shown structure also enables easy fully-differential implementation,
suitable for high-performance circuits. Here, only the single-ended OTAs are exchanged for
fully-differentially amplifiers, with the lower inputs in figure 4.5 connected to the inverting
outputs.

4.2.1. Small signal behavior

Since the gyrator consists of two voltage-controlled current sources, it can be implemented
by the means of two operational transconductance amplifiers (OTA). In this section, the small
signal behavior of the active inductor will be analyzed, using the OTA model shown in figure
4.6. In this model, the OTA is composed of a transconductance 𝑔𝑚, an input capacitance 𝐶in, an
output resistance 𝑟out and a feed-forward capacitance 𝐶𝑓𝑓. An output pole of the OTAs is not
included in the model (an output capacitance together with the output resistance), since the
OTAs drive large capacitive loads.

𝑔𝑚 ⋅𝑣𝑖𝑛 𝑟𝑜𝑢𝑡𝐶𝑖𝑛

𝐶𝑓𝑓
𝑣in 𝑣out

Figure 4.6. – Operational transconductance amplifier with its parasitic elements

Figure 4.7 shows the small signal model of the active inductor using non-ideal OTAs. For simpler
analysis, both OTAs are assumed to be identical. Additionally, the resonator capacitance 𝐶𝑇 is
also shown. It will be used in further discussions. Since the input capacitances are in parallel
with 𝐶𝑇 and 𝐶𝐿, respectively, they can safely be neglected. Therefore, only 𝐶𝑇, 𝐶𝐿 and 𝐶𝑓 𝑓 need
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4.2. The gyrator

𝑔𝑚 ⋅𝑣in 𝑟𝑜𝑢𝑡𝐶in

𝐶𝑓𝑓

𝐶𝐿

𝑣1

𝑔𝑚 ⋅𝑣1𝑟𝑜𝑢𝑡 𝐶in

𝐶𝑓𝑓

𝐶𝑇

𝑣1

𝑖in𝑣in

Figure 4.7. – Small signal model of the active inductor

to be considered.

(𝑣in − 𝑣1)𝑠𝐶𝑓𝑓 + 𝑣in𝑔𝑚 =
𝑣1
𝑟out

+ 𝑣1𝑠𝐶𝐿 + (𝑣in − 𝑣1)𝑠𝐶𝑓𝑓

𝑖in = 𝑣in𝑠𝐶𝑇 +
𝑣in
𝑟out

+ 𝑔𝑚𝑣1 + 2(𝑣in − 𝑣1)𝑠𝐶𝑓𝑓

𝑍in =
𝑟out + 𝑠𝑟2𝑜𝑢𝑡(𝐶𝐿 + 2𝐶𝑓𝑓)

𝑠2𝑟2𝑜𝑢𝑡(𝐶𝐿𝐶𝑇 + 2𝐶𝑓𝑓(𝐶𝐿 + 𝐶𝑇)) + 𝑠𝑟out(𝐶𝐿 + 𝐶𝑇 + 4𝐶𝑓𝑓) + 𝑔2𝑚𝑟2𝑜𝑢𝑡 + 1

The input impedance can be greatly simplified by using the restructuring the small signal model
similar to passive inductors. See the circuit in figure 4.2.

𝑌𝑖𝑛 =
1
𝑅𝑝

+
1
𝐶𝑝

+
1

𝑅𝑠 + 𝑠𝐿𝑒𝑞

𝑅𝑝 ≈ 𝑟𝑜𝑢𝑡 𝐶𝑝 ≈ 𝐶𝑇 + 2𝐶𝑓𝑓(1 +
𝐶𝑇
𝐶𝐿)

𝑅𝑠 ≈
1

𝑔2𝑚𝑟𝑜𝑢𝑡
𝐿eq ≈

𝐶𝐿 + 2𝐶𝑓𝑓
𝑔2𝑚

As expected, the parasitic capacitor 𝐶𝑓𝑓 changes the parallel capacitance and the equivalent
inductance of the resonator, but not the resistors. Furthermore, it does not introduce any
additional zeros or poles, therefore it has no important influence on the frequency behavior of
the resonator.

The resonance frequency of the tank is at

𝜔0 =
1

√𝐶𝑝𝐿eq
≈

𝑔𝑚

√𝐶𝐿𝐶𝑇

If non-identical transconductors 𝑔𝑚1 and 𝑔𝑚2 are assumed, then the resonance frequency
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4.2.1. Small signal behavior

becomes

𝜔0 ≈
√

𝑔𝑚1𝑔𝑚2
𝐶𝐿𝐶𝑇

= √𝜔𝑢1𝜔𝑢2

which is the geometrical mean of the unity-gain frequencies of the transconductors, presumed
that the two capacitances 𝐶𝐿 and 𝐶𝑇 mainly determine the respective gain-bandwidth prod-
uct. This is a good starting point for gyrator designs, since it defines the minimum needed
transconductance.

𝑅𝑠 can be transformed to a parallel resistor for easier handling and better comparison with
𝑅𝑝. This is an approximation, which works well for frequencies near the resonance frequency.
For very small signals, this is obviously not correct, since otherwise the resonator would be a
short circuit for DC values (the inductor has no resistance). For the transformation of the series
resistor, the corresponding quality factor of the inductor together with the series resistor is
needed (see [Raz12] for the impedance transformation):

̃𝑅𝑠 = 𝑅𝑠(𝑄2 + 1)

𝑄 =
𝜔0𝐿𝑒𝑞
𝑅𝑠

̃𝑅𝑠 = 𝑅𝑠(
𝜔2
0𝐿2𝑒𝑞
𝑅2𝑠

+ 1) ≈
(𝜔2

0𝐿𝑒𝑞)
2

𝑅𝑠

= 𝑔2𝑚𝑟out(𝜔0
𝐶𝐿
𝑔2𝑚)

2
=
𝑟out
𝑔2𝑚

(𝜔0𝐶𝐿)
2
= 𝑟out

𝐶𝐿
𝐶𝑇

The total parallel resistance of the tank near resonance can now be calculated from the parallel
combination of 𝑅𝑝 and ̃𝑅𝑠 using the relation above:

𝑅tot = 𝑅𝑝 ∥ ̃𝑅𝑠 = 𝑟out ∥ 𝑟out
𝐶𝐿
𝐶𝑇

= 𝑟out
𝐶𝐿

𝐶𝐿 + 𝐶𝑇

In order to maximize the quality factor 𝑄 of the tank, 𝑅tot should be maximized.

The obvious way to do this is to minimize 𝐶𝑇, but this also changes the resonance frequency 𝜔0.
If 𝜔0 should stay constant, 𝐶𝐿 has to vary accordingly to 𝐶𝑇:

𝜔0 =
𝑔𝑚

√𝐶𝐿𝐶𝑇
=
𝑔𝑚
𝐶0

with 𝐶0 = √𝐶𝐿𝐶𝑇

with

𝐶𝐿 = 𝛼𝐶0 and 𝐶𝑇 =
1
𝛼
𝐶0
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4.2. The gyrator

With this definition, 𝜔0 is independent of 𝛼 and 𝑅tot becomes

𝑅tot = 𝑅𝑝 ⋅
𝛼2

1 + 𝛼2
(4.1)

This fraction is big for big values of 𝛼. Therefore (since 𝐶𝐿 = 𝛼𝐶0), equation 4.1 suggests that 𝐶𝐿
should be big compared to 𝐶𝑇. However, a symmetrical design will show itself advantageous
for phase noise performance.

With the above definitions the total resonator impedance can be expressed similar to passive
inductors:

𝑍tank =
1

1
𝑅𝑝

+ 𝑠𝐶𝑝 +
1

𝑅𝑠+𝑠𝐿eq

=
𝑅𝑝(𝑅𝑠 + 𝑠𝐿eq)

𝑅𝑠 + 𝑠𝐿eq + 𝑅𝑝 + 𝑠𝑅𝑝𝐶𝑝(𝑅𝑠 + 𝑠𝐿eq)

=
𝑅𝑝𝑅𝑠 + 𝑠𝑅𝑝𝐿eq

𝑠2𝑅𝑝𝐿eq𝐶𝑝 + 𝑠(𝐿eq + 𝑅𝑝𝐶𝑝𝑅𝑠) + 𝑅𝑠 + 𝑅𝑝

which reduces to

𝑍tank ≈
𝑠𝑅tot𝐿eq

𝑠2𝑅tot𝐿eq𝐶𝑝 + 𝑠𝐿eq + 𝑅tot

4.2.2. Large signal effects

Until now, only a small signal model of the active inductor has been derived. However, due
to the significant non-linear nature of the devices used to build gyrators (OTAs, transistors),
the active inductor also has great dependencies on signal level. In this section the importance
of this will be evaluated. Note that passive inductors also show non-linear behavior due to
magnetic saturation effects. For typical on-chip signals however, this plays no role.

The large signal effects of active inductors can be best evaluated with a harmonic analysis. It is
of foremost importance that the inductance is still correctly synthesized for large excitation.
While a rigorous evaluation of this seems to be missing, it does not appear to have an influence
on the functioning of the device as inductor (see for example [LHL06]). However, the large
signal non-idealities should be taken into account in the design process. A gyrator consisting
of two OTAs needs to deliver quite large currents: An oscillator with an intrinsic frequency
of 5GHz, an amplitude of 1V and an inductor of 1 nH exhibits a reactive current through the
inductor of around 30mA. If an OTA has to supply this large currents, it will need a lot of
power and chip area. Important is the fact that the current through the individual branches
of the oscillator resonator is quite large, the total however is small (at resonance). Here, the
tank impedance is high and the relevant current only passes through the resistance of the tank.
Therefore, it is of great interest to implement not only the active inductor but the whole resonator.
For this, the tank capacitor should be included in designing the active inductor.
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4.2.3. Stability

The tank impedance at resonance takes the following form:

|𝑍 |2 =
𝜔2
0𝑅2𝐿2

(𝑅 − 𝜔2
0𝐿𝑅𝐶)2 + 𝜔2𝐿2

=
𝜔2
0𝑅2𝐿2

(𝑅 − 𝑅)2 + 𝜔2
0𝐿2

= 𝑅2

This is usually a large impedance, therefore the total current is small. Since the oscillator
operates at the resonance frequency of the tank, this also dictates the maximum output current
the internal OTAs need to provide. The parallel resistor 𝑅 depends on the losses so that loss-less
OTAs need no output current capabilities in theory.

4.2.3. Stability

Since gyrators are negative feedback systems, stability is an issue which needs investigation.
For this, the locations of the poles of the input impedance are investigated, which have to reside
in the left half-plane. There is some older work on gyrator stability (see for example [Rao70]),
but it does not seem as big of an issue, since it is not mentioned in most recent publications.
Some basic introductory information on stability in gyrators can be found on course slides by
Yuan ([Yua15]).

The poles of the active resonator reside at

𝑍in =
𝑟out + 𝑠𝑟2𝑜𝑢𝑡(𝐶𝐿 + 2𝐶𝑓𝑓)

𝑠2𝑟2𝑜𝑢𝑡(𝐶𝐿𝐶𝑇 + 2𝐶𝑓𝑓(𝐶𝐿 + 𝐶𝑇)) + 𝑠𝑟out(𝐶𝐿 + 𝐶𝑇 + 4𝐶𝑓𝑓) + 𝑔2𝑚𝑟2𝑜𝑢𝑡 + 1

𝑠𝑝 =
−(𝐶𝐿 + 𝐶𝑇 + 4𝐶𝑓𝑓) ± √(𝐶𝐿 + 𝐶𝑇 + 4𝐶𝑓𝑓)

2
− 4(𝐶𝐿𝐶𝑇 + 2𝐶𝑓𝑓(𝐶𝐿 + 𝐶𝑇))(𝑔

2
𝑚𝑟2𝑜𝑢𝑡 + 1)

𝑟𝑜𝑢𝑡(𝐶𝐿𝐶𝑇 + 2𝐶𝑓𝑓(𝐶𝐿 + 𝐶𝑇))

Can this system become unstable? If the term beneath the square root is negative, there are
two complex-conjugate poles with a negative real part. If the square root becomes real, it must
compensate the negative real part, therefore:

√(𝐶𝐿 + 𝐶𝑇 + 4𝐶𝑓𝑓)
2
− 4(𝐶𝐿𝐶𝑇 + 2𝐶𝑓𝑓(𝐶𝐿 + 𝐶𝑇))(𝑔

2
𝑚𝑟2𝑜𝑢𝑡 + 1) > (𝐶𝐿 + 𝐶𝑇 + 4𝐶𝑓𝑓)

Since the second term beneath the square root is always negative, the above relation will never
be true, making this a always stable system.

4.3. Implementation of active inductors

There are many very different implementation of active inductors, some using the conventional
approach with OTAs, other using as little as one transistor and a phase-shifting network. Some
approaches will be briefly shown here, it is however beyond the scope of this work to present
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4.3. Implementation of active inductors

all the details. The reader is referred to a book on active inductors ([Yua08]) and the habilitation
thesis of Ulrich Rohde ([Roh11]).

As was showed above, a gyrator can be built by using two operational transconductance
amplifiers. However, there are simpler approaches. All that is needed is a non-inverting and an
inverting transconductor. For these, simple circuits such as a common-drain and a common-
source are used. The approach is shown in figure 4.8. This configuration suffers from the

𝑀1

𝐼1

𝐼2

𝑀2

𝑉DD

𝑣in

Figure 4.8. – A simple gyrator based on non-inverting and inverting transconductors

low output resistances of the transistors, which gets especially severe in newer technologies.
There are numerous methods for enhancement, which involve the use of cascodes and negative
resistances at the output of the transconductors. The two mentioned publications give a
good overview of the use of these techniques in active inductors, which yields many different
topologies with interesting names. However, most of these configurations are single-ended.

Differential active inductors are usually built by using a the classic approachwith two operational
transconductance amplifiers, but are not limited to it. Again, many approaches are taken to
boost the gain of the transconductors. A good representative of this is the topology by Grözing
(see [GPB01]), who places a cross-coupled pair at the outputs of both transconductors. Figure
4.9 shows a system structure of this gyrator. The negative resistance of the cross-coupled pairs
can be tuned by varying the current source. With this, the compensation can be made quite well,
yielding high quality factors. Note that this differential active inductor needs a common-mode
stabilization mechanism (common-mode feedback).

Lastly, an active inductor made with only one transistor is presented. For this, a phase-shifting
network is needed, which guarantees that the input shows inductive behavior (appropriate
phase shift between input voltage and input current):
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+

−

−

++

−

−

+

+𝑣

−𝑣

−𝑅−𝑅
+ −

Figure 4.9. – A differential gyrator based on operational transconductance amplifiers with boosted
output resistances. The negative compensation resistors are implemented as cross-
coupled pairs.

𝑅

𝐶 𝑔𝑚𝑣𝑥

𝑖in𝑣in
𝑣𝑥

Figure 4.10. – A gyrator built from one transistor and a phase-shifting network.

𝑖in =
𝑣in − 𝑣𝑥

𝑅
+ 𝑔𝑚𝑣𝑥

𝑣𝑥 = 𝑣in
1

1 + 𝑠𝑅𝐶

⇔ 𝑖in = 𝑣in(
1
𝑅
+

1
1 + 𝑠𝑅𝐶(

𝑔𝑚 −
1
𝑅))

⇔ 𝑍in =
𝑅(1 + 𝑠𝑅𝐶)

1 + 𝑠𝑅𝐶 + 𝑅(𝑔𝑚 − 1
𝑅)

=
1 + 𝑠𝑅𝐶
𝑔𝑚 + 𝑠𝐶

which has an inductive region for 𝑔𝑚 > 𝑅−1.

The above circuit is shown by Pantoli et al. (see [PSL15]), where a class AB active inductor is
built. This maximized possible voltage swing.

All in all, there are many different implementations of active inductors. Which one serves the
best needs to be evaluated further.
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Chapter 5.

Oscillators with Active Inductors

In this chapter, oscillators based on active inductors are presented. For this, the basic concepts of
active inductors derived in the last chapter are used and expanded for analysis of oscillators.

A LC oscillator will be taken as reference design, which has an operation frequency of 5GHz
and achieves a phase noise performance of approximately −120 dBc/Hz. While this is also the
goal for the oscillator to be implemented, it is only to be seen as orientation.

5.1. General considerations

In order to build oscillators with active inductors, the topology will be borrowed from the
regular LC oscillator circuit. Here, a resonator determines the oscillation frequency and an
active element compensates the losses of the tank. Figure 5.1 shows this principle. Since the

Active Inductor

𝐶

𝑉DD

𝑀1 𝑀2

Active Resonator

𝑉DD

𝑀1 𝑀2

Figure 5.1. – An oscillator using an active inductor

structure of the oscillator is basically identical to the classical LC oscillator, it seems natural to
use the same design methodologies for both topologies. Therefore, many known enhancements
can also be used for the proposed approach, including filtering techniques (see [HSA01]) and
tail current-shaping (see [SK06]). Furthermore, one can employ conventional tuning techniques,
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5.1. General considerations

as capacitor arrays. Interestingly, since the inductance of an active inductor depends on
a capacitance, there is an additional tuning dimension using capacitor arrays also for the
inductor.

The straight-forward implementation (as shown in the previous chapter) using two operational
transconductance amplifiers is feasible, but it is possible to build active inductors with fewer
transistors, even down to only one (see [PSL14]). Especially for differential architectures, the
OTA approach has some disadvantages, since additionally to stability of the circuit the common-
mode stability must be considered. There exist topologies, that circumvent this problem.

Lu et al. ([LHL06]) propose the oscillator structure shown in figure 5.2. Transistors M1 – M3
form the active inductor, which in turn, together with 𝐶 forms the resonantor. The losses are
compensated by the classical cross-coupled pair. Note that no current source is used in order to
maximize voltage swing.

The transistors M1 and M2, together with their gate-source capacitances, perform the gyration
action. The transistor M3 is mostly used in triode region and so behaves like a resistor. As will
be shown below, this can be used to tune the inductance. In the original design, this property
is used for the tuning of the oscillator, additionally to the use of a varactor. Therefore, the
gate voltage of the two triode transistors sets the corresponding resistances. By decreasing
the gate-source voltage (by increasing 𝑣ctrl), the resistance also increases. At some point, the
devices enter the saturation region, where the resistance will be very high, compared to the
triode region. Both operating regions are suitable for this oscillator, but influence the operation
frequency.

M3L M3R

M2L M2R

M1L M1R

M4L M4R

𝑣ctrl

𝐶

Figure 5.2. – An oscillator using a differential active inductor ([LHL06])

In this implementation of the active inductor, no lumped capacitors are used in order to set the
inductance. Here, the parasitic capacitances are used, indeed the gate-source capacitors of M1
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and M2 are used in the small signal model for determination of the inductance. This has the
advantage of reaching higher frequencies and the lack of additional capacitors.

5.2. Small Signal Analysis

To derive the AC response of the active inductor, the a small signal model will be used. A
straightforward representation of the circuit yields the model in shown in figure 5.3, here the
transistors are represented by their transconductances. Additionally, the gate-source capaci-
tances of M1 and M2 are included as 𝐶12 (𝐶𝑔𝑠1 + 𝐶𝑔𝑠2 since they are in parallel) as well as the
gate-drain capacitance of M1. For this calculation, a differential excitation will be assumed,
therefore it is sufficient to calculate the repsonse of one half of the circuit. The current law at
node 1 and 2 yield the following equations:

𝑖𝑖𝑛 = −𝑣𝑥 ⋅ 𝑔𝑚1 + −𝑣𝑥 ⋅ 𝑔𝑚2 − 𝑠𝑣𝑥𝐶12 Node 1

𝑣𝑥 ⋅ 𝑔𝑚1 = (𝑣𝑥 +
𝑣in
2 ) ⋅ (𝑔𝑑𝑠3 + 𝑠𝐶23) + 𝑠𝑣𝑥𝐶12 + 2𝑠(2𝑣𝑥 + 𝑣in) ⋅ 𝐶𝑔𝑑1 Node 2

𝑣𝑥𝑔𝑚2 𝑣𝑥𝑔𝑚1

𝑔𝑔𝑑𝑠3 𝐶23

𝐶12 2𝐶𝑔𝑑1 𝐶12

−𝑣𝑥𝑔𝑚1 −𝑣𝑥𝑔𝑚2

𝑔𝑔𝑑𝑠3𝐶23

Node 1𝑖in𝑣𝑖𝑛
2

−
𝑣𝑖𝑛
2

Node 2

𝑣𝑥 −𝑣𝑥

Figure 5.3. – Small signal model of the active inductor

The above equations lead to the following input impedance:

𝑣𝑥 = −𝑣in

1
2(𝑔𝑑𝑠3 + 𝑠𝐶23) + 2𝑠𝐶𝑔𝑑1

𝑔𝑔𝑑3 − 𝑔𝑚1 + 𝑠(𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1)

𝑖in = 𝑣in

1
2(𝑔𝑑𝑠3 + 𝑠𝐶23) + 2𝑠𝐶𝑔𝑑1

𝑔𝑔𝑑3 − 𝑔𝑚1 + 𝑠(𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1)
(𝑔𝑚1 + 𝑔𝑚2 + 𝑠𝐶12)

𝑍(𝑠) = 2
𝑔𝑑𝑠3 − 𝑔𝑚1 + 𝑠(𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1)

𝑠2𝐶12(𝐶23 + 4𝐶𝑔𝑑)+𝑠(𝑔𝑑𝑠3𝐶12 + (𝐶23 + 4𝐶𝑔𝑑1)(𝑔𝑚1 + 𝑔𝑚2)) + 𝑔𝑑𝑠3(𝑔𝑚1 + 𝑔𝑚2)
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5.2. Small Signal Analysis

Again, the four-devices small signal equivalent circuit will be used to characterize the res-
onator:

𝐿eq = 2
(𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1)

3

(𝐶12𝑔𝑑𝑠3 + (𝐶23 + 4𝐶𝑔𝑑1)𝑔𝑚1)(𝐶12(2𝑔𝑚1 + 𝑔𝑚2 − 𝑔𝑑𝑠3) + (𝐶23 + 4𝐶𝑔𝑑1)(𝑔𝑚1 + 𝑔𝑚2))

𝐶𝑝 =
𝐶12(𝐶23 + 4𝐶𝑔𝑑1)

2(𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1)

𝑅𝑝 =
2(𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1)2

𝐶2
12𝑔𝑑𝑠3 + (𝐶2

23 + 16𝐶2
𝑔𝑑1 + 8𝐶23𝐶𝑔𝑑1)(𝑔𝑚1 + 𝑔𝑚2) + 𝐶12(𝐶23 + 4𝐶𝑔𝑑1)(2𝑔𝑚1 + 𝑔𝑚2)

𝑅𝑠 = 2
(𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1)

2
(𝑔𝑑𝑠3 − 𝑔𝑚1)

(𝐶12𝑔𝑑𝑠3 + (𝐶23 + 4𝐶𝑔𝑑1)𝑔𝑚1)(𝐶12(2𝑔𝑚1 + 𝑔𝑚2 − 𝑔𝑑𝑠3) + (𝐶23 + 4𝐶𝑔𝑑1)(𝑔𝑚1 + 𝑔𝑚2))

This expression are rather complicated and not very practical. Although a different structure
for the implementation of the active inductor is used, the basic properties and relations are still
visible. The inductance of the resonator is a quotient of capacitances and transconductances,
the tank capacitor depends in a simple manner on the involved capacitors.

More interesting is the usuable frequency range. The active inductor should have a preferably
large inductive frequency range, that is a region where the magnitude of the impedace increases
with frequency. This is influenced by the location of the poles and the zeros of the impedance:1
The corresponding positions are

𝑠𝑧 = −
𝑔𝑑𝑠3 − 𝑔𝑚1

𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1

𝑠𝑝1 = −
𝑔𝑚1 + 𝑔𝑚2

𝐶12
𝑠𝑝2 = −

𝑔𝑑𝑠3
𝐶23 + 4𝐶𝑔𝑑1

The active inductors presented above has one zero, which shows the inductive behaviour.
Because of parasitic capacitances, two poles are also present, which must be higher in frequency
than the zero. Note that one pole is always present in this topology, even in the ideal case. Since
the zero contains a difference of two transconductances, it can be very low in frequency. This
corresponds to the series resistor (in the inductor branch) of the small signal model to become
very low. The poles are always negative, so this configuration is always stable.

A zero always increases the impedance with increasing frequency, but the phase shift depends
on its sign. A zero situated in right half-plane produces phase shifts similar to capacitors, only
a left half-plane zero shows the correct (inductive) behaviour. It is therefore necessary that the

1Usually, the term poles and zeros is used for systems with a transfer function, but this does not prevent the
analysis discussed here.
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zero of the active inductor is located at frequencies below zero:

𝑠𝑧 < 0
⇔ 𝑔𝑑𝑠3 > 𝑔𝑚1

Furthermore, the magnitude of the zero must be smaller than that of the poles or the inductive
region will be “overwritten” by capacitive behaviour. Therefore:

𝑔𝑑𝑠3 − 𝑔𝑚1
𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1

<
𝑔𝑚1 + 𝑔𝑚2

𝐶12
⇔ 𝑔𝑑𝑠3 < (𝑔𝑚1 + 𝑔𝑚2)

𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1
𝐶12

+ 𝑔𝑚1 (5.1)

𝑔𝑑𝑠3 − 𝑔𝑚1
𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1

<
𝑔𝑑𝑠3
4𝐶𝑔𝑑1

⇔ 𝑔𝑑𝑠3 > −4
𝐶𝑔𝑑1

𝐶12 + 𝐶23
𝑔𝑚1 (5.2)

Relation 5.1 has a dependence on the capacitances, but the fraction will never be smaller than 1
(𝐶12 → ∞). Relation 5.2 is always true, since all circuit parameters will be always positive.
Therefore, the transconductances must fulfill the following constraints:

𝑔𝑚1 < 𝑔𝑑𝑠3 < 2𝑔𝑚1 + 𝑔𝑚2

In order to minimize 𝑅𝑠, 𝑔𝑑𝑠3 is chosen to be of the same magnitude as 𝑔𝑚1 (but slightly bigger):
𝑔𝑑𝑠3 ≈ 𝑔𝑚3. Considering 𝑔𝑚2: Figure 5.2 shows that M1 and M2 operate at the same gate-source
voltage and therefore have the same operating point. The slight difference of the drain voltages
can be neglected. With this, 𝑔𝑚1 is defined to be a linearly scaled version of 𝑔𝑚2.

𝑔𝑚1 = 𝛼 ⋅ 𝑔𝑚2

𝑔𝑑𝑠3 = 𝛼 ⋅ 𝑔𝑚2

With this, 𝐿𝑒𝑞 becomes:

𝐿𝑒𝑞 = 2
(𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1)

3

𝛼𝑔𝑚2(𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1)(𝛼 + 1)𝑔𝑚2(𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1)
=
𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1

𝛼(𝛼 + 1)𝑔2𝑚2

In order to minimize dependence on parasitic transistor capacitances, 𝐶𝑔𝑠1 and 𝐶𝑔𝑠2 will be
replaced by a big lumped capacitor 𝐶𝑖𝑛𝑑. This allows better control of the oscillation frequency
with varying supply voltage and of course process corners. Furthermore, this allows quite
exact hand calculations: A minimum value for the equivalent inductor will be chosen in order
to maximize the frequency range of the oscillator. A parallel tank capacitor of 1 pF will be
used for the following calculations. This value is sensible to integrate and allows relativly high
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5.3. Noise Analysis

frequencies. With this, the sum of the capacitances 𝐶12, 𝐶23 and 𝐶𝑔𝑑1 is simplified as 𝐶ind:

𝑓0 =
1

2𝜋√𝐿𝐶
!= 5GHz

𝐿𝑒𝑞 =
1

(2𝜋𝑓0)
2
𝐶tank

=
𝐶12 + 𝐶23 + 4𝐶𝑔𝑑1

𝛼(𝛼 + 1)𝑔2𝑚2
≈

𝐶ind
𝛼(𝛼 + 1)𝑔2𝑚2

⇔ 𝑔𝑚2 ≈ 2𝜋𝑓0
√

𝐶ind𝐶tank
𝛼(𝛼 + 1)

With values of 1 pF for the capacitors and an oscillator frequency of 5GHz the following 𝑔𝑚2 is
needed:

𝑔𝑚2 ≈
31.4mS

√𝛼(𝛼 + 1)

The easiest approach is to set 𝛼 to one in order to make 𝑔𝑚1 and 𝑔𝑚2 equal, then the maximum
𝑔𝑑𝑠3 can be calculated, obeying the above stated constraints.

With the loss known from the small signal model containing 𝑅𝑠 and 𝑅𝑝, the minimum needed
transconductance of the cross-coupled pair for stable oscillation can be calculated.

5.3. Noise Analysis

The discussion above on transistor sizes, transconductances and capacitor sizing may suggest
to size the capacitors equally. This also corresponds to the investigation on output currents
of OTAs in classical gyrators, where the findings suggested building the whole tank, not only
the active inductor. In fact in can be shown that equal sizing of the capacitors yields minimum
phase noise. Therefore, the inductor capacitance 𝐶𝐿 and the tank capacitor 𝐶𝑇 are made equal,
both 1 pF.

Lu et al. perform a classical small-signal noise calculation of the input-referred noise current
of the LC tank (see [LHL06, section E]) and state that with that result and the corresponding
impulse sensitivity function the total phase noise can be found. They do not, however, propose
any further calculation and observations so that there is no prediction of phase noise. This also
applies for this work. However, some simulations have been done in order to determine the
dependence of the phase noise on several circuit parameters. The findings are summarized in
the next section.
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5.4. Circuit improvements

In the original paper, Lu et al. place a capacitor (a varactor) parallel to the active inductor
in order to obtain a resonator to be used in an oscillator. However, they do not use extra
capacitances in order to set the inductance of the active inductor. For this, only the intrinsic
parasitic capacitances of the transistors are used, in the model predominantly 𝐶𝑔𝑠1 and 𝐶𝑔𝑠2.
However, the these transistor capacitances are highly non-linear with varying voltage across
them, which deteriorates the performance of the oscillator. In this work it was found that using
additional capacitances in order to set the inductance helps the phase noise performance of
the oscillator. Since the oscillator frequency decreases with increasing inductance, and the
inductance increases with increasing capacitances, this has to be compensated for with a higher
transconductance of the transistors M1 and M2 for constant oscillator frequency.

Additionally, the transistors don’t use the whole allowed voltage swing while using a power
supply with the maximum allowed voltage (in this case 1.2V). Besides, no transistor exhibits the
total voltage swing whithin the oscillator. Therefore, it is possible to raise the operating voltage
and maximize the waveform amplitude. This also improves the phase noise performace. In this
case, a supply voltage of 1.8V was used. In production, the reliability has to be checked. A high
voltage could pose enhanced stress on the individual transistors, decreasing their lifetime.

In this work, simulations across different operating regions of the oscillators where performed,
showing no problems concerning high voltage across devices. Still, the used voltages are near
forbidden regions and an extensive investigation in practical designs is necessary.

Noise simulations can show the individual contributions of the devices to the total noise. Here,
it was revealed that the transistors M3L and M3R add significant amounts of noise. White noise
of the value 4𝑘𝑇𝛾𝑔𝑚 can’t be avoided, but also flicker noise plays an important role. Therefore,
the area of these devices should be maximized, which in turn leads to very large devices for the
small resistances needed. Therefore, it may be preferable to exchange the transistors with real
resistors, which can be implemented fairly easy on chip.

The described methods of reducing noise make a big impact on the total phase noise performance.
Here, it was possible to reduce the noise by nearly 20 dB from −80 dBc/Hz to −100 dBc/Hz at on
offset frequency of 1MHz, while having a constant oscillator frequency.
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Chapter 6.

Experimental Results

In this chapter, simulation results for the oscillator in figure 5.2 are presented and discussed.
These results are to be seen as proof-of-concept, since the oscillator was not fabricated and no
layout or corner simulation were performed. However, they show what can be done and serve
as starting point for circuit optimizations.

Figure 6.1 shows the tuning characteristic (left image) and the phase noise at highest and lowest
frequency (right image) of the oscillator. Since both axes of the left image are logarithmic, one
can see that the tuning characteristic of the oscillator is highly nonlinear. However, if linearity
is important, the tuning resistances dependence on the control voltage (or word) can be made
the inverse of the tuning characteristic and therefore have a linearizing effect.
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Figure 6.1. – Tuning and phase noise of the oscillator

As expected, the phase noise is lower for the slower oscillation, and the linewidth of the oscillator
at the lower tuning setting is more narrow. This can be seen from the flat region of the phase
noise.

Figure 6.2 shows the waveform of the oscillator at both the highest (left image) and the lowest
(right image) frequency setting. As can be seen the purity of the oscillation degrades at lower
frequencies. The oscillation amplitude, however, does not vary much (see also figure 6.4 for a
comparison).
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5.4. Circuit improvements
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Figure 6.2. – Time-domain waveform of the oscillator at the highest (left) and the lowest (right)
tuning setting. Note the change of the scaling of the x-axis.

Figure 6.3 shows the corresponding spectra of the two oscillator signals (highest setting left,
lowest setting right). Again, the higher purity of the high-frequency signal is clearly visible,
since the peak of the harmonics decreases more rapidly in the left image. Additionally, the
absense (or low magnitude) of even-order harmonics reveals the differential design of the
oscillator, which suppresses even-order nonlinearity.
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Figure 6.3. – Spectrum of the oscillator waveform at the highest (left) and the lowest (right) tuning
setting. Note the change of the scaling of the x-axis

The variation of amplitude across the tuning range can be seen in the left image of figure 6.4.
The amplitude is prone to some variation, but limited to about 20%. The amplitude rises with
increasing frequencies and reaches a maximum around 2GHz. After that, it starts to decrease
with a higher slope, indicating the maximum operating frequency of the oscillator. While the
purity of the oscillator waveform is often not of great importance (since an output buffer is
used), it does deteriorate the figure of merit and therefore the power effieciency of the oscillator.
This connection of total harmonic distortion and the figure of merit can be seen in the right
image of 6.4.
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Figure 6.4. – Amplitude and total harmonic distortion (THD) across the tuning range.
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Chapter 7.

Conclusions and prospects

As was shown, it is possible to build reasonable low-noise oscillator based on active inductors.
However, the question arises whether it is sensible to use this topology. In the following section,
the topology used in this work will be compared to other typical oscillator topologies without
an inductor such as ring oscillators and relaxation oscillators.

7.1. Theoretical noise minimum of oscillators based on active
inductors

An important question is the theoretically minimum achievable phase noise of an oscillator. It
was shown that relaxation oscillators can’t get better than a certain figure of merit (see [NLD05]).
So what is the best performance an oscillator based on active inductors can achieve?

To answer this question, a linear model of the resonantor is considered. Here, the conventional
approach using two OTAs is used. An OTA can be modeled by its transconductance, its output
resistance and (associated with a pole) a capacitor.1 The corresponding model can be seen in

𝑔𝑚1 𝑆𝑖𝑖1 𝑟out,1𝑔𝑚2𝑆𝑖𝑖2𝑟out,2𝐶𝑇 𝐶𝐿

Figure 7.1. – Linear active resonantor model with non-linear energy restoring element to study
phase noise behaviour

figure 7.1, where a non-linear, energy-restoring element is added in order to build a proper
oscillator. Note that the rest of the model is truly linear. This circuit is simulated in cadence
with varying outpout resistances.

Figure 7.2 (left image) shows the simulation result. The phase noise decreases with increasing
output resistance, which is reasonable. An increase in output resistance improves the quality

1Here only single-pole systems are assumed.

75



7.1. Theoretical noise minimum of oscillators based on active inductors

factor of the resonator. For an infinitive output resistance the phase noise reaches 0 (−∞ dBc/Hz).
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Figure 7.2. – Normalized phase noise of the oscillator in figure 7.1 with varying output resistance
of the OTAs

This result is only true with ideal capacitors: Even if it were possible to build a perfect active
inductor, the non-idealities of the capacitor would become noticable. This is shown in the right
image of figure 7.2: At a certain point, increasing the output resistance of the OTAs does not
improve phase noise. This can be seen easily in the model of figure 7.1: The degraded quality
factor of the capacitors can be modeled with a parallel resistor, “replacing” the output resistor
of the OTAs.

It is to be expected that the active gyrator, even if it were perfect, will introduce more noise in
the tank than a conventional inductor. Furthermore, the injected noise of the passive inductor
is inversely proportional to the quality factor: Q is determined by a physical resistor, which in
turn also generates noise. The active inductor lacks this poperty. The output resistors of the
OTAs determine the quality factor, but don’t generate noise (they are small signal resistors).
The noise is generated by the transistors and related to their transconductances. Therefore, for
the active inductor it is possible to simultaneously get high noise and a high quality factor.

A note on the quality factor of the active inductor: Increasing the output resistance of the OTAs
also increases their gain. This can also be acchieved by increasing their transconductances, but
this changes the equivalent inductance. In order to keep the inductance constant (and therefore
a constant oscillation frequency), the capacitances must be changed. In the end, it is possible
to also improve the quality factor of the active inductor by changing the transconductances.
Previously it was derived that the quality factor and the noise of the active inductor can be
adjusted independently. How can this be true with considering the current discussion?

It is important to keep the wanted goald in mind: Improving phase noise without increasing
power consumption. The phase noise can be decreased by either increasing the output re-
sistances or the transconductances of the OTAs (with appropriate compensation of selected
parameters like oscillation frequency). However, increasing transconductance always demands
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proportionally more power, while increasing output resistance does not2. The output resis-
tance of an OTA can be improved by many means, for example through the use of cascodes or
cross-coupled pairs as additional loads.

Grözing et al. (see [GPB01]) proposed an active gyrator built from two OTAs whose output
resistances are compensated by the means of cross-coupled pairs. Through changing their bias
currents the (negative) compensation resistances can be tuned until they almost match the
output resistances of the OTAs (they must not become larger or the circuit becomes unstable).
The paper only shows simulation results, but here they reach a quality factor of a few hundreds.
Stornelli et al. (see [Sto+16]) implement a bandpass filter based on an active inductor, which
reaches a quality factor of 330. Furthermore, it can be assumed that active inductors with even
higher quality factors are possible, therefore not limiting the total quality factor of the resonator.
The main question is whether the extra noise of the active inductor, as compared to passive
inductors, is compensated by the better quality factor of the capacitors (assuming the quality
factor of the active inductors has no influence on phase noise).

Consider again Leeson’s equation:

ℒ(Δ𝜔) = 10 log
(
2𝐹𝑘𝑇
𝑃tot

⋅ (1 + (
𝜔0

2𝑄Δ𝜔)
2

) ⋅ (1 +
𝜔1/𝑓

Δ𝜔 ))

which reduces in the 𝜔−2-region to

ℒ(Δ𝜔) = 10 log
(
2𝐹𝑘𝑇
𝑃tot

⋅ (
𝜔0

2𝑄Δ𝜔)
2

)

therefore3

ℒ ∼
𝐹
𝑄2

The relation above shows that while the phase noise is linearily connected to the device excess
noise, it decreases with the square of the total quality factor. This means that a tenfold increase
in quality factor through active inductors can tolerate a hundredfold increase in device noise
(with equal phase noise performance).

The analysis above has a flaw: It only considers the region of white noise and neglects flicker
noise and constant phase noise (produced by white noise in the buffer of the oscillator). The
latter is not of great concern for this discussion, the former however is. Here, the quality factor
can not “compensate” the upconverted flicker noise. Usually, resistive lines (which are present
in passive inductors) show little flicker noise. This means that the flicker noise region of the
phase noise of oscillators based on active inductors will be significantly higher. However, since
flicker noise occurs close to the intrinsic oscillator frequency, it could be filtered out by the
phase-locked loop or injection-lock techniques within the oscillator. This must be considered in
practical oscillator designs.

2Usually, techniques for increasing 𝑟out do need a bit more power, but there is no direct proportionality as for 𝑔𝑚.
3Here, the 10 log() is dropped, since it is only used to express phase noise in dBc/Hz. The analysis does not change
through this.
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7.3. Summary

7.2. Comparison to other oscillator topologies

Table 7.1 compares the oscillator implemented in this work to other implementations. Since one
of the key goals of this work is to present an alternative to classical topologies, the oscillator is
compared to different structures. As reference, one oscillator each of the topologies relaxation
oscillator, ring oscillator, LC oscillator and an oscillator based on active inductors is used. As

Topology & Work
Frequency

(GHz)
Phase Noise @ 1MHz

(dBc/Hz)
Power
(mW)

Area
(mm2)

FoM𝑇
(dBc/Hz)

Ring Osc.
[Liu+09] 7.3 — 7.86 −103.4 60 0.16 (0.13 μm) −140.3

Relaxation Osc.
[Ger+12] 0.001 — 0.012 −109 (@100 kHz) 0.09 0.03 (65 nm) −145.6

LC Osc.
[Zou+16] 3.61 — 5.26 −129.5 — −123.7 27 0.147 (180 nm) −167.3 — −180.8

Active Inductor
Osc.[LHL06] 0.5 — 3 −118 — −101 6 — 28 0.045 (180 nm) −157.7 — −159.2

This work (∗) 0.625 — 2.9 −101 — −108 1.2 — 30 - −158.3 — −164.0

Results marked (∗) denote simulation results.

Table 7.1. – Comparison of oscillator implementations

expected, the LC oscillator has the highest figure of merit and is followed by the oscillators
based on active inductors. The ring oscillator shown here has a very bad FoM, they usually
acchieve higher values. The oscillator implemented by Lu et al. only occupies a third of the area
of the LC oscillator, but this has a much better phase noise performance with higher frequencies.
Still, oscillators based on active inductors look promising and should be investigated further.

Unfortunately, there are many interesting oscillator designs with high tuning ranges, low
phase noise and power consumption without any die photograph or mentioning of chip area.
Therefore, these designs are not included in table 7.1, since one of the main objects of this work
is the reduction of consumed chip area of oscillators.

7.3. Summary

This work presented an introduction to oscillators based on active inductors. For this, general
discussions of oscillators were made in order to compare different oscillator topologies, since
many already known principles can be used for active inductor oscillators. An existing topology
was adapted and used to implement an oscillator in a smaller technology (65 nm), which does
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not reach the performance of the reference LC oscillator. Still, the results show potential for
further improvements.

7.4. Further prospects

There are research groups which investigate the implementation of active inductors. While there
are some publications on oscillators, the main interest seems to be on general implementations
and filter design, which may neglect certain effects influencing oscillator performance. For this,
a rigorous analysis of active inductors for use in oscillators should be performed.

In my opinion, the discussion in section 7.1 should be evaluated empirically: By building an
OTA with high output resistance, for example using the Grözing topology. As starting point,
unrealistic conditions (neglecting mismatch and interconnect resistances) can be used in order
to test the possibility of a high-Q oscillator. As was shown, with perfect capacitors the quality
factor should be able to reach infinity. If high values can be reached, then the capacitors then
can be made imperfect, making the model more and more accurate. For the series resistances of
the capacitors, derived from specific quality factors, the following formula can be used:

𝑅𝑠 =
1

𝜔0𝐶𝑄

where 𝑅𝑠 is the series resistor, 𝜔0 the intrinsic oscillator frequency, 𝐶 the associated capacitance
and 𝑄 the corresponding quality factor.

Besides an OTA implementation of oscillators with active inductors, also the topologies using
only a few transistors look promising, since here only very little devices add noise and the area
can be very small.

Since stability is an issue with active inductors, perhaps this property can be used deliberately.
Think for example of active inductors with OTA using the Grözing topology. Here, a cross-
coupled pair is used to boost the output resistance, which is effectively parallel to the cross-
coupled pair of the oscillator. In the right configuration it could be possible that one cross-
coupled pair is not needed, therefore resulting in a topology with less devices and (possibly)
less noise. In the big world of active inductor structures, there exist more with some kind of
compensation circuit which can cause instabilities. Further investigations could reveal how
these can be used constructively.
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Appendix A.

Mathematical additions

A.1. Important trigonometric identities

cos(𝑎) ⋅ cos(𝑏) =
1
2(

cos(𝑎 − 𝑏) + cos(𝑎 + 𝑏))

sin(𝑎) ⋅ sin(𝑏) =
1
2(

cos(𝑎 − 𝑏) − cos(𝑎 + 𝑏))

sin2(𝑎) =
1
2(

1 − cos(2𝑎))

cos2(𝑎) =
1
2(

1 + cos(2𝑎))

sin(𝑎 ± 𝑏) = sin(𝑎) cos(𝑏) ± cos(𝑎) sin(𝑏)
cos(𝑎 ± 𝑏) = cos(𝑎) cos(𝑏) ∓ sin(𝑎) sin(𝑏)

𝑎 sin(𝑥) + 𝑏 sin(𝑥 + 𝜃) = √𝑎2 + 𝑏2 + 2𝑎𝑏 cos(𝜃) sin(𝑥 + arctan(𝑏 sin(𝜃), 𝑎 + 𝑏 cos(𝜃)))

A.2. Calculation of the ISF for the simple LC resonator

In this section, the ISF of the simple LC resonator (see figure 3.19) will be calculated analytically.
First, the differential equation describing the resonator with injected current is solved. This
serves as foundation for the calculation of the impulse sensitivity function.

A.2.1. Solution for the output voltage of the LC resonator under current
injection

The basic differential equation is:

𝑖inj = 𝑖0𝛿(𝑡 − 𝑡0) = 𝑖𝐶 + 𝑖𝐿 = 𝐶
𝜕
𝜕𝑡
𝑣out +

1
𝐿 ∫

𝑡

0
𝑣out d𝑡
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A.2. Calculation of the ISF for the simple LC resonator

For easier analysis, this calculation will be performed in the 𝑠-domain:

𝑖0 exp(−𝑡0𝑠) = 𝐶(𝑠𝑉out − 𝑣out(0)) +
1
𝑠𝐿

𝑉out

It is assumed that the capacitor is charged at the “beginning” (𝑡 = 0), so 𝑣out(0) = 𝑣0. Therefore,

𝑖0 exp(−𝑡0𝑠) = 𝑉out(𝑠𝐶 +
1
𝑠𝐿)

− 𝐶𝑣0

⇔ 𝑉out =
𝑖0 exp(−𝑡0𝑠) + 𝐶𝑣0

𝑠𝐶 +
1
𝑠𝐿

=
𝑠𝐿(𝑖0 exp(−𝑡0𝑠) + 𝐶𝑣0)

𝑠2𝐿𝐶 + 1

= 𝑣0
𝑠

𝑠2 + 𝜔2
0
+
𝑖0
𝐶
exp(−𝑡0𝑠)

𝑠
𝑠2 + 𝜔2

0

⇔ 𝑣out(𝑡) = 𝑣0 cos(𝜔0𝑡) +
𝑖0
𝐶
𝜎(𝑡 − 𝑡0) cos(𝜔0𝑡)

A.2.2. Calculation of the impulse sensitivity function

The above result can now be used to calculate the impulse sensitivity function. As reminder: the
ISF is a periodic function, which gives the amount of phase change of an perturbed oscillator
with the time of injection as parameter. To derive it, the phase change after the injection must
be calculated. The oscillator waveform after the injection is of the form

𝑣 = 𝑣0 cos(𝜔0𝑡) + Δ𝑣 cos(𝜔0(𝑡 − 𝑡0)) (A.1)
which can be written as:

𝑣 = 𝑎 sin(𝜔0𝑡 + 𝜃) = 𝑎 cos(𝜔0𝑡 + 𝜃 −
𝜋
2)

(A.2)

With
𝑎2 = 𝑣20 + Δ𝑣2 + 2𝑣0Δ𝑣 cos(𝜔0𝑡0) (A.3)

tan(𝜃) =
𝑣0 + Δ𝑣 cos(𝜔0𝑡0)

Δ𝑣 sin(𝜔0𝑡0)
(A.4)

The term 𝜔0𝑡0 can be expressed as 𝜙0 and is the phase at which the injection occurs. Here, only
phases between 0 and 2𝜋 are considered. With this, the phase change can be calculated as

Δ𝜙 = 𝜃 −
𝜋
2

tan(Δ𝜙) = tan(𝜃 −
𝜋
2
) =

sin(𝜃 − 𝜋
2)

cos(𝜃 − 𝜋
2)

= −
cos(𝜃)
sin(𝜃)

= −
1

tan(𝜃)
= −

Δ𝑣 sin(𝜙0)
𝑣0 + Δ𝑣 cos(𝜙0)
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A.2.3. Injection without amplitude change

Now the ISF can be calculated to

Γ(𝜙0) = arctan(−
Δ𝑣 sin(𝜙0)

𝑣0 + Δ𝑣 cos(𝜙0))
which reduces for small values of Δ𝑣 to

Γ(𝜙0) ≈ −
Δ𝑣
𝑣0

sin(𝜙0)

For bigger values of Δ𝑣, the ISF is not really practical. Interestingly, the phase change is not
proportional to Δ𝑣, which may be counter intuitive. Figure A.1 shows the deviation from the
sinusoidal form of the ISF for larger values of Δ𝑣.
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Δ𝑣 = 0.5

Figure A.1. – The impulse sensitivity function Γ(𝜙0) for various values of Δ𝑣

For the ideal LC resonator, the ISF is sinusoidal, with a deviating waveform for bigger values
of Δ𝑣. However, this is not important since the injection perturbance will always be small
compared to the amplitude of the signal (recall that this discussion is about noise).

A.2.3. Injection without amplitude change

There exists a moment when the current injection causes no amplitude change. Contrary to
many depictions1, this generally does not coincide with the zero crossings of the oscillator
waveform. Here, this point in time will be calculated using the above derived model for current
injection in an ideal LC tank.

1For example does the original paper present it this way ([HL98]), as well as Razavi in his book on RF design
([Raz12]).
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A.2. Calculation of the ISF for the simple LC resonator

For zero-amplitude change, the following must hold (see Equation A.3 above):

𝑣20
!= 𝑎2

= 𝑣20 + Δ𝑣2 + 2𝑣0Δ𝑣 cos(𝜔0𝑡0)
Δ𝑣 = −2𝑣0 cos(𝜙0)

⇔ 𝜙0 = arccos(−
Δ𝑣
2𝑣0)

The zero crossings of the (unperturbed) oscillator waveform occur at 𝜙 =
𝑛𝜋
2

. At that points, Δ𝑣
has to be 0 in order to have no amplitude change. But then there would be no charge injection
at all, so a zero-amplitude change for injections at the zero crossings of the oscillator waveform
is impossible.
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Appendix B.

Simulation ressources

The following listing shows the used verilog-A module for simulating oscillators. It provides a
negative, non-linear resistance in the form of a tanh-function. The maximum provided current
(𝐼max) and the slope in the origin (𝐺𝑚) can be controlled. Furthermore, an offset can be specified,
which shifts the current-voltage-characteristic voltage-wise. This can be used for single-ended
simulations, but the operating point must be found by hand. In differential configurations this
parameter should not be needed, since the mean of the differential voltage usually is 0.

`include "constants.vams"
`include "disciplines.vams"

module negative_resistance(p, n);
electrical p, n;

parameter real Imax = 1e-3;
parameter real Gm = 1e-3;
parameter real offset = 0;

real V0 = Imax / Gm;

analog begin
I(p, n) <+ -Imax * tanh((V(p, n) - offset) / V0);

end
endmodule
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